

有限元分析的典型 Project

【应用建模 Project6】热应力分析: 桁架结构的温度及装配应力分析

如图 6.1 所示为一个桁架结构,分析下列两种情形下的节点位移和单元应力:

- (a) 构件 1、3、7 和 8 的温度升高 50℃。
- (b) 由于制造误差, 构件 9 和 10 短了 0.63mm, 而构件 6 长了 0.27mm, 但必须进行强制装配。

桁架所用材料的相关参数: 弹性模量 E = 200GPa, 线膨胀系数 $\alpha = 1.25 \times 10^5$ (/°C)。每个构件的横截面积均为 100mm²。

图 6.1 一个由 10 根构件组成的桁架结构

【建模要点】

●需要选择可以施加温度载荷的杆单元。ANSYS 提供了二维杆单元 LINK1,温度可以作为体力 施加到单元上。情形(a)是单纯的温度应力问题,情况(b)属于装配应力问题,也可以转化成 温度应力问题。

❷根据节点坐标建立节点,再由节点建立单元。在节点5、6上施加位移约束。

●对于情形(a),通过命令<TREF>把参考温度设为 20℃,通过命令<BFE>对单元 1、3、7 和 8 施加温度 70℃。对于情形(b),同样可以采用命令<BFE>对单元 6、9 和 10 上施加适当的温度变 化值,使得各自的温度收缩值等价于制造误差,即假定单元由温度变化引起的自由伸缩量,与单 元长度的差异量相同。单元 6 长了 0.27mm,相当于把单元 6 的温度升高 24℃。单元 9 和 10 短了 0.63mm,相当于把单元 9 和 10 的温度降低 39.6℃。

解答:以下为基于 ANSYS 图形界面(GUI)的菜单操作流程;注意:符号"→"表示针对菜单中选项的鼠标点击操作。

1 温度应力分析的交互式操作(step by step)

(1) 进入 ANSYS

程序 → ANSYS → ANSYS Product Launcher → File Management, Working Directory: D:\analysis (设定工 作目录)(Browse), Job Name: joint (设定工作文件) → Run

(2)设置不显示日期和时间

Utility Menu: PlotCtrls \rightarrow Window Controls \rightarrow Window Options \rightarrow DATE DATE/TIME display:NO DATE or TIME \rightarrow OK

......

(3)设置参数

Utility Menu: Parameters \rightarrow scalar Parameters \rightarrow selection: <u>A=900</u> \rightarrow Accept \rightarrow selection: <u>T=70</u> \rightarrow Accept \rightarrow

CLOSE

(4) 选择单元类型

 $\begin{array}{rcl} \text{Main Menu: Preprocessor} & \rightarrow & \text{Element Type} & \rightarrow & \text{Add/Edit/Delete} & \rightarrow & \text{Add} & \rightarrow & \text{Library of Types:} \\ \underline{\text{Structural Link, 2D spar 1}} & \rightarrow & \text{OK} \rightarrow & \text{CLOSE} \end{array}$

(5) 定义实常数

Main Menu: Preprocessor \rightarrow Real Constants \rightarrow Add/Edit/Delete \rightarrow Add \rightarrow Choose element type : Type 1 Link 1 \rightarrow OK \rightarrow Real Constant Set No: <u>1</u>(第1号实常数), AREA : <u>100</u>(横截面积) \rightarrow OK \rightarrow Close

(6) 定义材料参数

Main Menu: Preprocessor \rightarrow Material Props \rightarrow Material Models \rightarrow Material Models Available: Structural (双击打开子菜单) \rightarrow Linear(双击) \rightarrow Elastic(双击) \rightarrow Isotropic(双击) \rightarrow EX: <u>2E5</u>(弹模) \rightarrow OK \rightarrow Thermal Expansion(双击) \rightarrow Secant Coefficient(双击) \rightarrow Isotropic(双击) \rightarrow ALPX : <u>1.25E-5</u>(线膨胀系 数) \rightarrow OK \rightarrow 关闭材料定义菜单(点击菜单的右上角 X)

(7) 生成几何模型

step1 生成第1号节点: (x=2*A, y=A, z=0)

Main Menu: Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Nodes \rightarrow In Active CS \rightarrow Node number : <u>1</u>, XYZ Location in active CS: <u>2*A, A, 0</u> \rightarrow Apply \rightarrow 以同样方式输入节点 2, 坐标为: <u>2*A, 0, 0</u> **step2** 生成第 2 号节点: (x=2*A, y=0, z=0)

Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Nodes \rightarrow In Active CS \rightarrow Node number: <u>2</u>, XYZ Location in active CS: <u>2*A</u>, <u>0</u>, <u>0</u> \rightarrow OK

step3 节点复制:

Preprocessor \rightarrow Modeling \rightarrow Copy \rightarrow Nodes \rightarrow Copy \rightarrow list of items: <u>1</u>, <u>2</u> \rightarrow OK \rightarrow ITIME: <u>3</u>; DX: -A; INC: <u>2</u> \rightarrow OK

(8) 直接由节点生成单元

step1 生成第一个单元

Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Elements \rightarrow Auto Numbered \rightarrow Thru Nodes: <u>5,3</u> \rightarrow OK step2 生成另外 9 个单元

重复以上步骤 9 次, 更改 List of Items 输入, 依次改为 3.1; 6.4; 4.2; 4.3; 2.1; 5.4; 6.3; 3.2; 4.1

(9)设置分析类型

Preprocessor \rightarrow Loads \rightarrow Analysis Type \rightarrow New Analysis \rightarrow type of analysis \rightarrow static \rightarrow OK

(10) 在节点上定义位移边界条件

step1 施加位移约束

Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow On Nodes \rightarrow List of Items s : <u>5,6</u> \rightarrow OK \rightarrow Lab2, All DOF \rightarrow OK

step2 设定参考温度

Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Settings \rightarrow Reference Temp \rightarrow TREF: <u>20</u>

step3 设定各单元温度

Main Menu \rightarrow Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Temperature \rightarrow On Elements \rightarrow List of Items : <u>1,3,7,8</u> \rightarrow Apply as \rightarrow Constent Value \rightarrow VAL1: <u>T</u> \rightarrow OK

(11) 分析计算

Utility Menu →Select →Everything

Main Menu → Solution → Solve → Current LS → (弾出一个对话框) OK → (求解完成后,弾出 一个对话框) Solution is done! Close → (关闭信息文件右上角的 X) / STATUS Command

(12) 显示节点位移分量

step1 对于线单元(如杆、梁)按实体效果进行显示(以 2 倍实常数的比例)

Utility Menu \rightarrow PlotCtrls \rightarrow Style \rightarrow Size and Shape \rightarrow ESHAPE, [\checkmark]ON, SCALE: <u>2</u> \rightarrow OK

step2 显示 X 方向位移

Main Menu \rightarrow General Postproc \rightarrow Plot Results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow DOF Solution, X-Component of Displacement \rightarrow OK

step3 显示 Y 方向位移

Main Menu \rightarrow General Postproc \rightarrow Plot Results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow DOF Solution, Y-Component of Displacement \rightarrow OK

(13) 显示杆单元的轴向应力

Step1 定义显示项

Main Menu →General Postproc →Element Table →Define Table→Add→Lab: <u>FX-I</u> →Item: By sequence num→SMISC→: <u>SMISC,1</u> →OK→Add→Lab: <u>FX-J</u> →Item: By sequence num→SMISC→<u>SMISC,1</u> →OK→Close **Step2** 显示轴向应力结果

Main Menu \rightarrow General Postproc \rightarrow Plot Results \rightarrow Contour Plot \rightarrow Line Elem Res \rightarrow Lab I: <u>FX-I</u> \rightarrow Lab J: <u>FX-J</u> \rightarrow Fact: <u>0.5</u> \rightarrow KUND: Deformed Shape \rightarrow OK

计算得到的桁架结构因温度变化产生的位移与轴力见图 6-10 及图 6-11。

(14) 退出系统

ANSYS Utility Menu: File \rightarrow Exit... \rightarrow Save Everything \rightarrow OK

图 6.2 桁架结构因温度变化产生的位移

图 6.3 桁架结构因温度变化产生的轴力

2 温度应力分析的完整命令流

求解与情形(a)对应的桁架节点位移和单元应力、显示节点位移、杆单元轴向应力的命令流在 下面列出。

以下为命令流语句;注意:以"!"打头的文字为注释内容,其后的文字和符号不起运行作用。 !%%%%%%%% [应用建模 Project6] %%%% begin %%%%%%

!-----注: 以下命令流中的符号\$,表示可将多行命令流写成一行-------

!%%%%%%%% [应用建模 Project6] %%%% begin %%%%%%%					
/prep7	!进入前处理				
/PLOPTS,DATE,0	!设置不显示日期和时间				
!====设置参数					
A=900	!设定桁架的跨度,单位为 mm。				
T=70	! 把杆单元温度设置为 70℃(参考温度设置为 20℃)				

!====设置单注	元、材料, 生成	立 节点及单	单.	元		
ET,1,LINK1			!	选择杆单元 LINK1		
R,1,100			!	用实常数定义杆单元的截面积		
MP,EX,1,2.0E5			!	定义材料的弹性模量		
MP,ALPX,1,1.2	5E-5		!	定义材料的线膨胀系数		
N,1,2*A,A			!	创建节点1		
N,2,2*A,0			!	创建节点 2		
NGEN,3,2,1,2,,-	-1*A		!	向 Y 轴负方向复制节点 1、2, 生成其余的节点		
TYPE,1			!	按序号指定单元类型		
MAT,1			!	按序号指定材料		
REAL,1			!	按序号指定实常数		
!以下分别由名	合个2个节点来	创建 10	单	元		
E,5,3	\$E,3,1	\$E,6,4		\$E,4,2	\$E,4,3	
E,2,1	\$E,5,4	\$E,6,3		\$E,3,2	\$E,4,1	
FINISH			!	退出前处理模块		
!====进入求解模块,施加热边界条件,并进行热应力求解						
/SOLU			!	进入求解模块		
ANTYPE,STAT	IC		!	设定分析类型		
D,5,ALL,0,,6,1			!	在节点 5、6 上定义 X、Y 方向的位移约束		
TREF,20			!	参考温度设为 20℃		
BFE,1,TEMP,1,	Т		!	把单元1的温度设为70℃		
BFE,3,TEMP,1,	Т		!	把单元3的温度设为	ხ 70℃	
BFE,7,TEMP,1,T !		!	把单元7的温度设为70℃			
BFE,8,TEMP,1,	Т		!	把单元8的温度设为	ხ 70℃	
ALLSEL,ALL			!	选中所有对象		
SOLVE			!	求解		
FINISH			!	退出求解模块		
!====进入一般的后处理模块						
/POST1			!	进入通用后处理模切	央	
/ESHAPE,2			!7	对于线单元按实体效果进行显示(2倍)		
PLNSOL,U,X			!	用云纹图方式显示节点位移的 X 分量		
PLNSOL,U,Y			!	用云纹图方式显示节点位移的 Y 分量		
!显示线单;	元轴力					
ETABLE,FX_I,	SMISC,1]车	由力		
ETABLE,FX_J,	SMISC,1					
PLLS, FX_I, FX_J,0.5,1						
!%%%%%%%% [应用建模 Project6] %%%% end %%%%%%%%						

3 强制装配问题的完整命令流

针对情形(b)的强制装配问题的分析,给出以下命令流语句;注意:以"!"打头的文字为注释内容,其后的文字和符号不起运行作用。

!%%%%%%%% [应用建模 Project61]	%%%% begin %%%%%%
/PREP7	!进入前处理模块
/PLOPTS,DATE,0	!设置不显示日期和时间

!====设置参数	
A=900	!设定桁架的跨度,单位为 mm。
T1=44	!设置温度参数
T2=-19.6	!设置温度参数
!====设置单元、材料,生成节点及	单元
ET,1,LINK1	!选择杆单元 LINK1
R,1,100	!用实常数定义杆单元的截面积
MP,EX,1,2.0E5	!定义材料的弹性模量
MP,ALPX,1,1.25E-5	!定义材料的线膨胀系数
N,1,2*A,A	! 创建节点 1
N,2,2*A,0	! 创建节点 2
NGEN,3,2,1,2,,-1*A	!向Y轴负方向复制节点1、2,生成其余的节点
TYPE,1	!按序号指定单元类型
MAT,1	!按序号指定材料
REAL,1	!按序号指定实常数
! 以下分别由各个2个节点来创建10	单元
E,5,3 \$E,3,1 \$E,6,4	\$E,4,2 \$E,4,3
E,2,1 \$E,5,4 \$E,6,3	\$E,3,2 \$E,4,1
FINISH	!退出前处理模块
!====进入求解模块, 施加热边界条	件,并进行热应力求解
/SOLU	!进入求解模块
ANTYPE,STATIC	!设定分析类型
D,5,ALL,0,,6,1	!在节点 5、6 上定义 X、Y 方向的位移约束
TREF,20	!参考温度设为 20℃
BFE,6,TEMP,1,T1	! 定义单元 6 的温度
BFE,9,TEMP,1,T2	! 定义单元9的温度
BFE,10,TEMP,1,T2	! 定义单元 10 的温度
ALLSEL,ALL	!选中全部实体
SOLVE	! 求解
FINISH	!退出求解模块
!====进入一般的后处理模块	
/POST1	!进入通用后处理模块
/ESHAPE,2	!对于线单元按实体效果进行显示(2倍)
PLNSOL,U,X	!用云纹图方式显示节点位移的 X 分量
PLNSOL,U,Y	!用云纹图方式显示节点位移的 Y 分量
!显示线单元轴力	
ETABLE,FX_I,SMISC,1	!轴力
ETABLE,FX_J,SMISC,7	
PLLS, FX_I, FX_J,0.5,1	
FINISH	! 退出通用后处理模块
!%%%%%%%% [应用建模 Project61]	%%%% end %%%%%%%