第二章 神经系统的功能活动

人体是一个复杂的有机体,各器官、各系统之间的功能相互联系、相互协调、相互制约。

人体生活在变化的环境中,环境变化随时影响体内各种功能。这就需对体内各种生理功能不断作出迅速完善的调节,使机体适应内外环境变化。

实现这些调节功能的就是神经系统。

第二章 神经系统的功能活动

第一节 神经元与神经胶质

第二节 神经元间的信息传递

第三节 神经元间的联系与神经反射

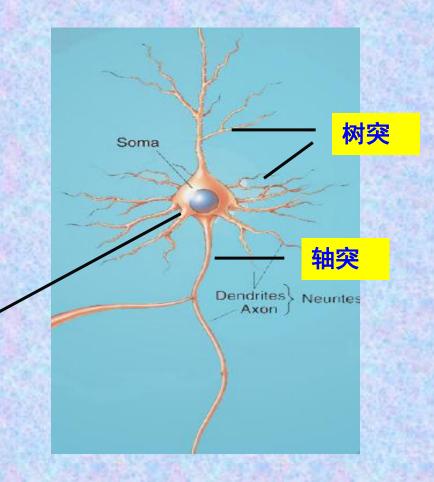
第四节 神经系统结构

第五节 脑电活动

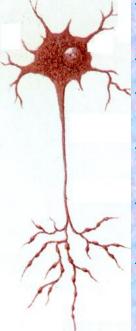
第六节 觉醒与睡眠

第七节 脑的高级功能

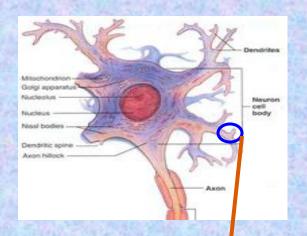
第一节 神经元与神经胶质


神经细胞(神经元)

神经系统中的基本结构和功能单位,接受刺激、传导冲动和内分泌功能。


神经胶质细胞(神经胶质)

支持、营养、绝缘和防御等作用。


1、神经元 (neuron)

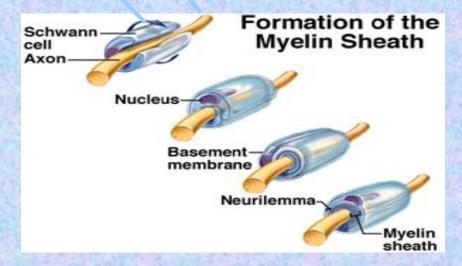
神经元突起特征

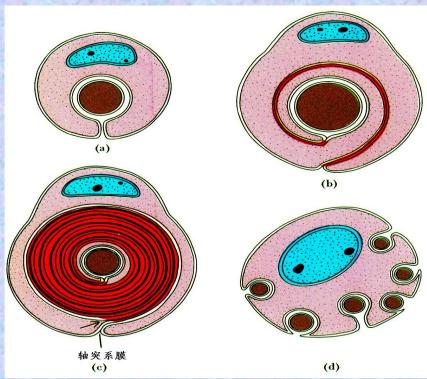
	树突 (dendrite)	轴突 (axon)
数目	≥1	1
形状	树枝状 有树突棘	细、均匀 有侧支或终末分支
结构	同细胞质	有神经原纤维 有轴丘
功能	接受刺激 传入冲动	传出冲动

神经纤维(nerve fiber):

神经元长突起+胶质细胞

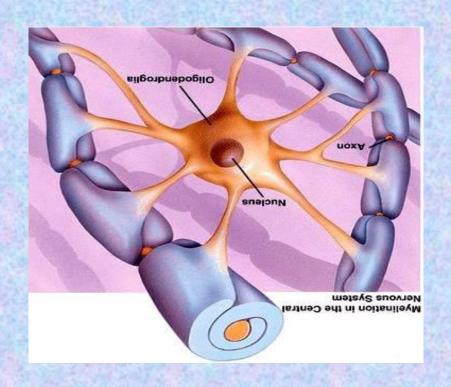
有髓神经纤维:

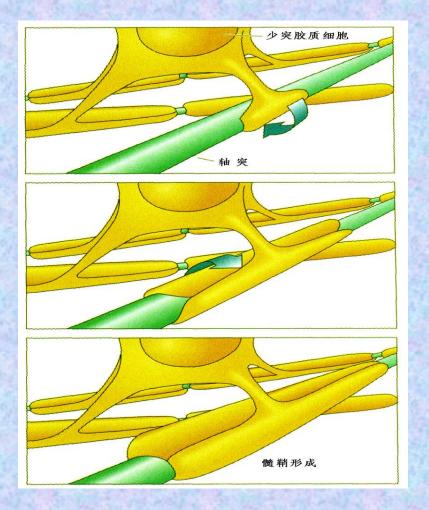

體鞘 PNS (周围神经系统):施万细胞 CNS (中枢神经系统):少突胶质细胞


无髓神经纤维:

PNS的髓鞘形成

轴突


施万细胞

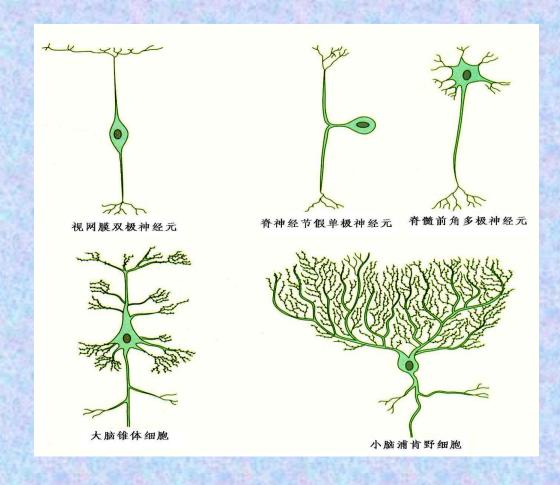


CNS的髓鞘形成

少突胶质细胞 同心圆卷绕)

郎飞结(Ranvier rode) + 结间体(internode) 有髓神经纤维 施万细胞 的核 无髓神经纤维 Schwann cell Axons

神经纤维的分类


纤维分类						类	C 类(无髓纤维)	
		A.	224			, ,	sC	drC
	来源	初级肌 梭传入纤 维和支配 梭外肌的 传出纤维	皮肤的 触压觉传 入纤维	支配梭 内肌的传 出纤维	皮肤痛 温觉传入 纤维	自主神经节前纤维	自主神经节后纤维	后根中 传导痛觉 的传入纤 维
纤维直径 (μm)		13~22	8~13	4~8	1~4	1~3	0.3~1.3	0.4~1.2
	传导速度 (m/s)	70~120	30~70	15~30	12~30	3~15	0.7~2.3	0.6~2.0
锋电位持续 时间(ms)		0.4~0.5				1.2	2.0	
负后	%锋电位 高度	3~5				无	3~5	无
电 持续时间 (ms)		12~20				-	50~80	T- 11
	%锋电位 高度		0. 2			1.5~4.0	1.5	10~30
	持续时间 (ms)	40~60				100~300	300~1000	75~100

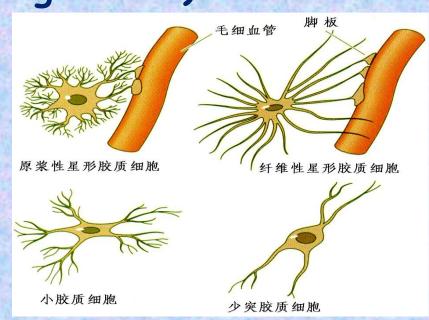
神经元的分类

●根据神经元突起的数目 { 假单极神经元 双极神经元 多极神经元

●根据神经元的功能

【感觉神经元(传入神经元) 运动神经元(传出神经元) 中间神经元(联络神经元)

2、神经胶质(细胞) (neuroglial cell)


● 特点:

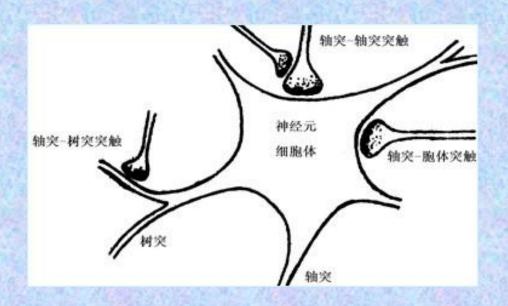
数目多

- ★ 有突起, 但不分树突、轴突
- ★ 不形成突触

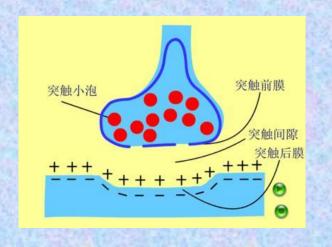
● 神经胶质的类型:

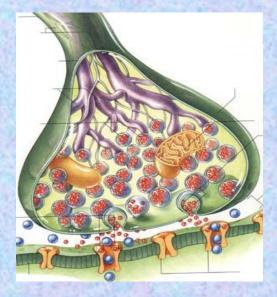
★PNS中有施万氏细胞(Schwann) ★CNS内有星形胶质细胞、少突胶质细胞、小胶质细胞等。

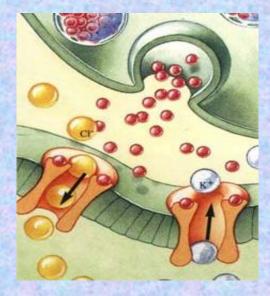
● 神经胶质的功能:


- ◇ 支持作用: 把神经元集结在一起。
- ◇ 隔离和绝缘作用: 防止离子和递质扩散。
- ◇ 摄取化学物质: 如摄取 γ-氨基丁酸
- ◇ 分泌功能: 如施旺氏细胞在神经末梢位置可分泌Ach。
- ◇ 为神经系统的发育开辟通道、提供支架。
- ◇ **修复与再生**:神经胶质可填充因神经元损失或衰老造成的空隙,引导外周神经的再生。
 - ◇ 营养功能: 伸出伪足分别与血管和神经元接触。

第二节 神经元间的信息传递(神经元通讯)


- 一、突触联系(化学性突触)
- 二、紧密连接(电突触)
- 三、非突触性化学传递


一、经典的化学突触传递(synaptic transmission)


突触: 神经元与神经元之间特化的连接结构

1、突触结构

组成

突触前部

突触小泡 突触前膜 (内含神经递质)

突触间隙

宽10-30nm

突触后部

突触后膜

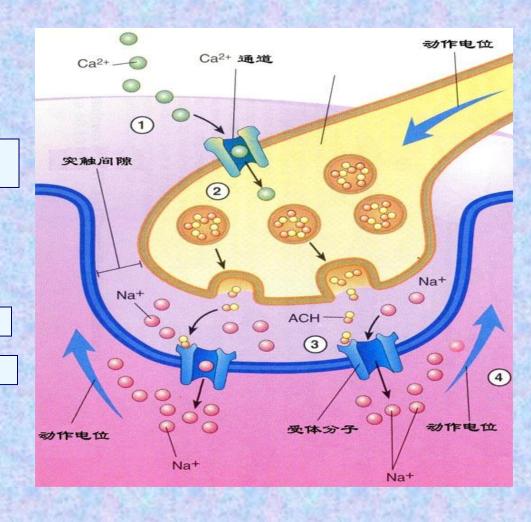
(有神经递质受体和离子通道)

2、突触传递过程

突触前轴突末梢的AP

Ca²⁺内流: 降低轴浆粘度和 消除突触前膜内的负电位

突触小泡中递质释放


递质释放

递质与突触后膜受体结合

突触后膜离子通道开放

离子通透↑

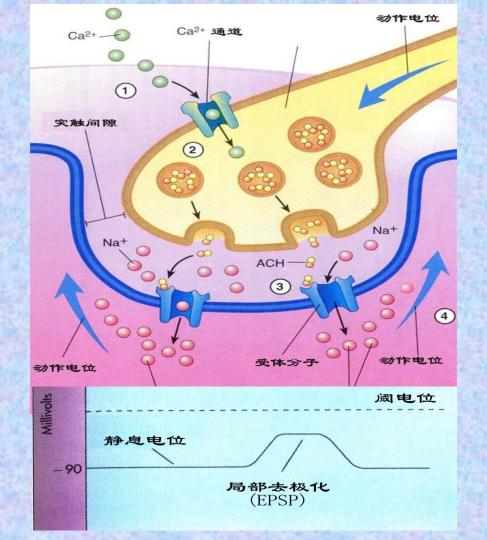
突触后电位

2.1 兴奋性突触后位 (Excitatory post synaptic potetial, EPSP)

突触前轴突末梢的AP

Ca²⁺内流: 降低轴浆粘度和 消除突触前膜内的负电位

突触小泡中兴奋性递质释放


递质与突触后膜受体结合

突触后膜离子通道开放

Na⁺(主) K⁺通透性 ↑

Na+内流、 K+外流

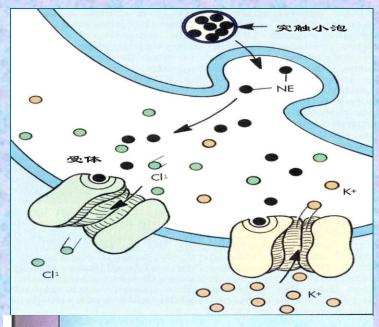
EPSP (局部去极化)

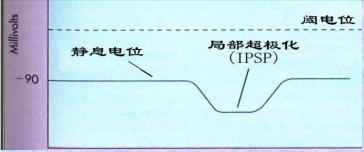
2.2 抑制性突触后电位(Inhibitory post synaptic potetial, IPSP)

突触前轴突末梢的AP

Ca²⁺内流:降低轴浆粘度和 消除突触前膜内的负电位

突触小泡中抑制性递质释放


递质与突触后膜受体结合

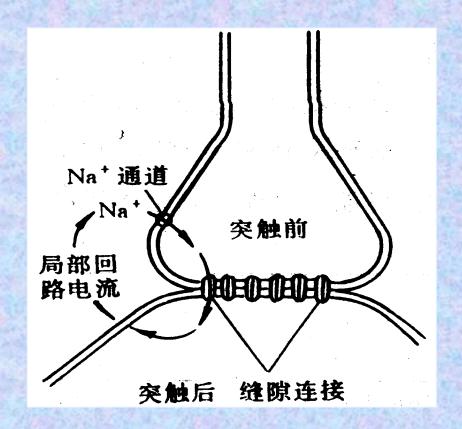

突触后膜离子通道开放

C1-(主) K+通透性↑

C1-内流、K+外流

IPSP (局部超极化)

- 3、突触传递的特征
- (1) 单向传递 突触前N元→突触后N元。
- (2) 突触延搁 需时0.3~0.5ms/个突触。
- (3) 总和 时间总和和空间总和。
- (4) 兴奋节律的改变 在同一反射弧中的突触前N元与突触后N元上记录的放电频率不同.
- (5) 对内环境变化的敏感性 对缺氧、PC02 ↑、药物敏感(如pH ↑ →N元兴奋性 ↑;咖啡因→递质释放 ↑)。
 - (6) 易疲劳性 与递质的耗竭有关。


二、电突触传递

结构基础 缝隙连接。

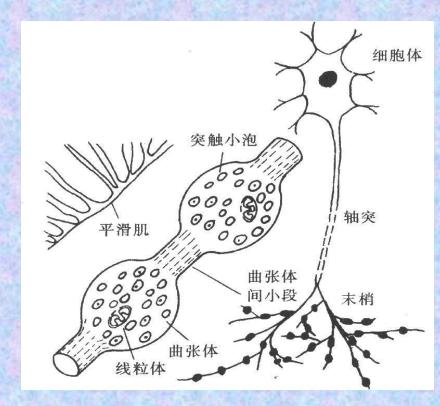
缝隙连接是二个N元紧密接触的部位上有沟通两细胞浆的水通道蛋白,允许带电离子通过,且电阻低。

传递过程 电-电(AP以局部电流方式)。

传递特征 双向性,速度快,几乎无潜 伏期。

三、非突触性化学传递

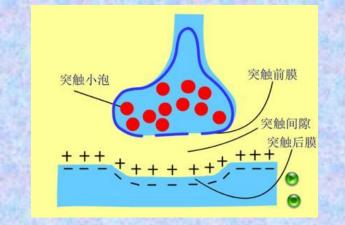
结构基础


轴突末梢分支上有结节状曲张体。

传递过程

递质经组织液扩散到邻近效应器, 与受体结合发挥生理作用。

传递特征


- ① 不存在突触前膜与后膜的特化结构;
- ② 不存在一对一支配关系;
- ③ 递质扩散距离较远;
- ④ 释放递质能否发挥效应,取决于效应器细胞上有无相应受体。

四、神经递质及其受体

1、确定递质的标准

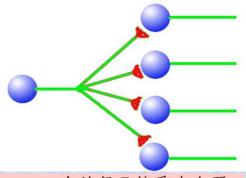
- (1) 神经元内有合成神经递质的物质及酶系统。
- (2) 递质贮存于突触小泡,冲动到达时能释放入突触间隙。
- (3) 能与突触后膜受体结合发挥特定的生理作用。
- (4) 存在能使该递质失活的酶或其它环节(如重摄取)。
- (5) 用递质拟似剂或受体阻断剂能加强或阻断递质的作用。

2、神经递质分类

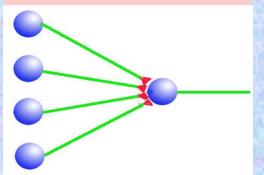
分类	家 族 成 员
胆碱类	乙酰胆碱
单胺类	多巴胺、NE、5—HT、组胺
氨基酸类	谷氨酸、门冬氨酸、甘氨酸、GABA
肽类	下丘脑调节肽、ADH、催产素、阿片肽、脑-肠肽、AII、心房钠尿肽等
嘌呤类	腺苷、ATP
气体	NO, CO
脂类	PG类

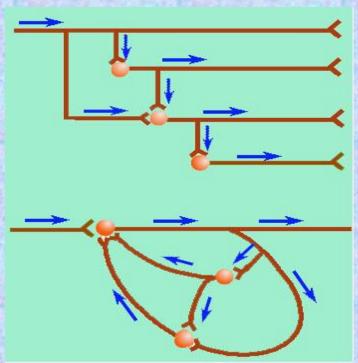
3、主要的递质受体

递质	受体	第二信使	拮抗剂	通道效应	递质主要分布
ACh	N ₂ (肌肉型烟碱受体) N ₁ (N元型烟碱受体)		筒箭毒 十烃季铵 筒箭毒 六烃季铵	↑ Na ⁺ 和其他 小离子	外周 所有自主N节前纤维、大 多数副交感N节后纤维、少 数交感N节后纤维、骨骼肌 N纤维;
	M _{1脑}	↑ IP ₃ /DG	S可 S可	↑ Ca ²⁺	
	M ₂ (心)	↓ cAMP	托品品	↓ K+	中枢 前角运动N元、丘脑后部
	M ₃ 平滑肌	↓ cAMP			腹侧的特异感觉投射N元、 网状结构上行激动系统、
	M ₄ (腺体)	↑ IP ₃ /DG			以


					A CONTRACTOR OF THE PROPERTY O
递质	受体	第二信使	拮抗剂	通道效应	递质主要分布
	α 1	↑ IP ₃ /DG	酚妥拉明	↓ K ⁺	外周
NE	α ₂ (突触前膜 小肠)	↓ cAMP	耐妥拉明 育亨宾 心得宁 阿提洛尔 丁氧胺	↑ K ⁺ ↓ Ca ²⁺	多数交感N节后纤维; 中枢 低位脑干及上行投射到
	β ₁ (儿) (人) (人) (人) (人) (人) (人) (人) (人) (人) (人	↑ cAMP			皮层、边缘前脑、下丘脑 以及下行到达脊髓后角、 侧角、前角的纤维。
多巴胺	D_1 , D_5	↑ cAMP			黑质-纹状体、
	D ₂ , D ₃ , D ₄	↓ cAMP		↑ K ⁺ ↓ Ca ²⁺	结节-漏斗、 中脑边缘系统。
5-HT	5-HT ₁	↓ cAMP		↑ K+	中缝核内及上行投射到纹 状体、下丘脑等以及下行
	5-HT ₂	↑ IP ₃ /DG		↓ K ⁺	到脊髓背角、侧角、前角。
The second second					

第三节 神经元之间的连接与反射活动


一、神经元间的连接


- 1、辐散
- 2、聚合
- 3、链锁状
- 4、环状

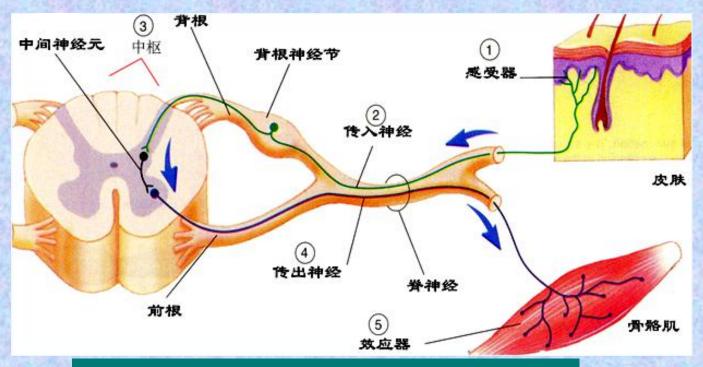
一个神经元通过轴突 分支与多个神经元建立突触 联系。常见传入。

一个神经元接受来自不 同神经元的突触联系。常见 传出。

链锁状:空间范围扩大。 环状: 时间上延长或终止。

二、反射

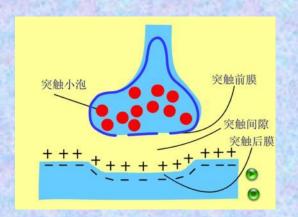
1、反射概念 在中枢神经系统(CNS)参与下,机体对内外环境刺激的规律性应答过程。

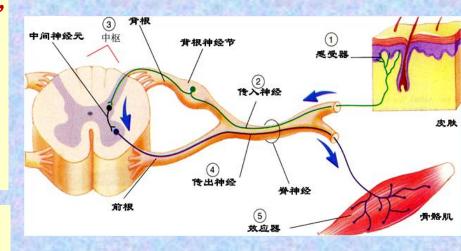

2、分类

在中枢神经系统参与下的机体对内外环境刺激的规律性反应。

非条件反射: 先天就有 反射 条件反射: 后天获得

3. 反射弧

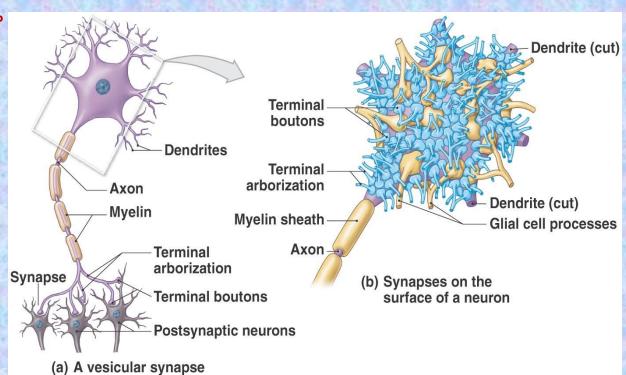

(reflex arc)反射的结构基础和基本单位



感受器→传入神经→中枢→传出神经→效应器

4、反射活动中中枢兴奋的特征

- 5.1 单向 兴奋只能由传入至传出,不能逆向。
- 5.2 中枢延搁 兴奋通过中枢部分较慢
- 5.3 总和 由单根传入纤维传入的冲动,一般不能引起反射,但能引起中枢产生 阈下兴奋,如果由同一传入纤维先后连 续传入多个冲动或相关的多个传入纤维 同时传入传入多个冲动至同一反射中枢, 阈下兴奋可以总和而产生反射。
- 5.5 易疲劳 中枢易受环境因素影响,极易疲劳。



5、反射活动的协调


5.1 最后公路原则

传出神经元最终表现为兴奋或抑制及其表现程度, 取决于作用于该神经元的所

有突触传递效应的总和。

5.2 反射的反馈调节

反馈调节:

当刺激发动一个反射活动后,效应器的活动效应通过该反射系统的感受器,返回作用到中枢,从而调整系统的活动过程,称反射活动的反馈调节。

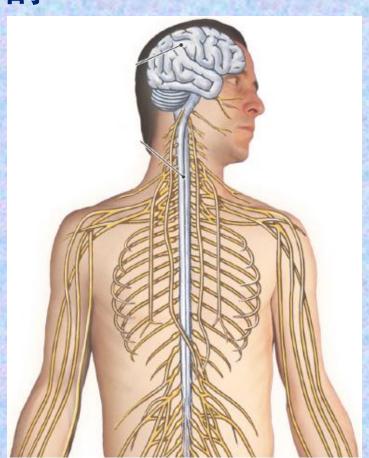
负反馈:

反馈调节使原来的反射活动受到抑制,称为负反馈调节。如血压调节,内环境调节。人体的绝大多数反馈调节都属于负反馈,从而维持人体的稳态。

正反馈:

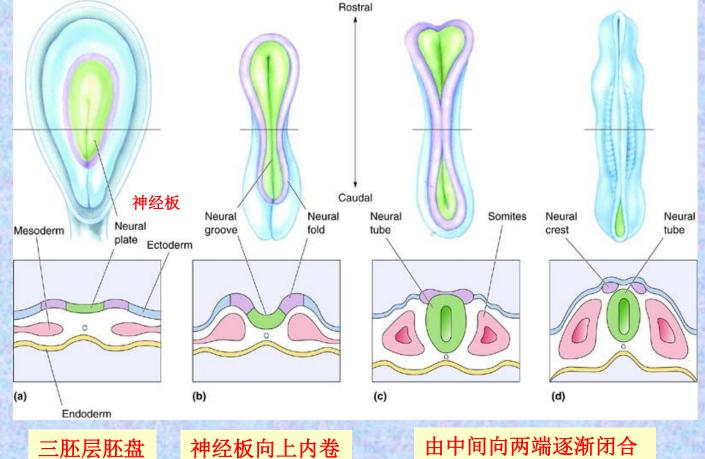
当刺激发动一个反射活动后,反馈调节使原来的反射活动持续加强,称为正反馈调节。如排尿反射、孕妇生产过程等。

第四节 神经系统解剖

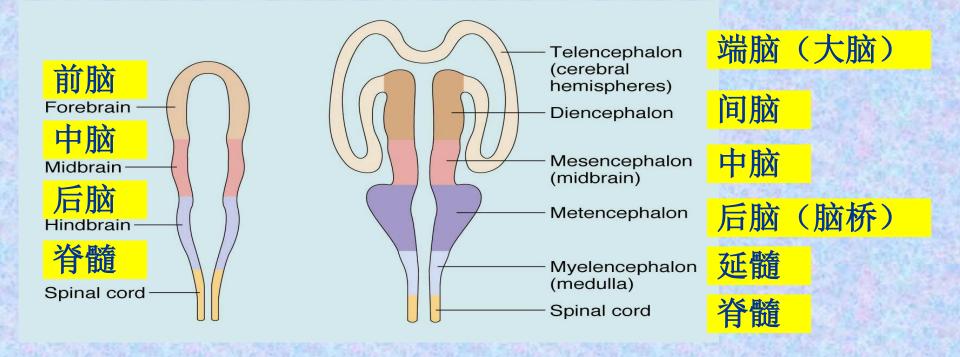

一、神经系统组成

中枢神经系统 Central NervousSystem CNS

√ 脑 \脊髓

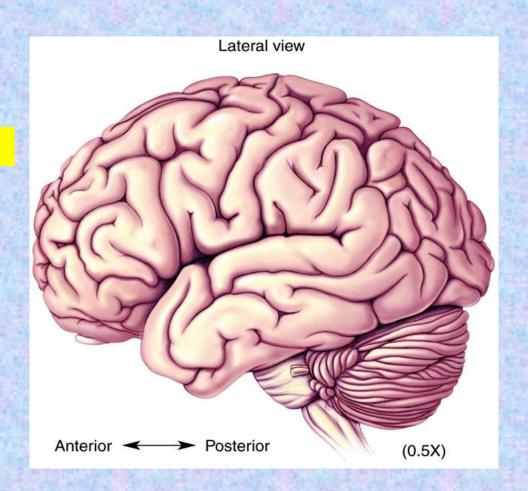

周围神经系统 Peripheral NervousSystem PNS 脑神经

脊神经

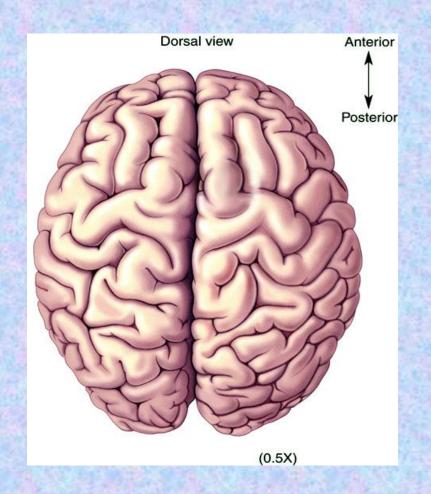


二、脑

1、脑的发生

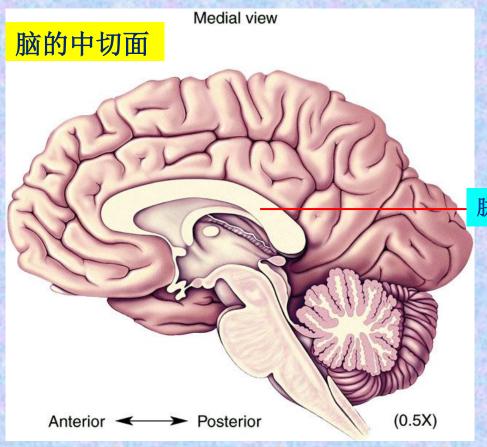


三胚层胚盘 形成神经板 神经板向上内卷 形成神经沟 由中间向两端逐渐闭合 形成神经管

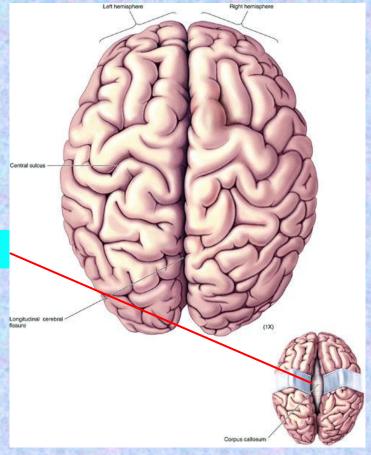


2、脑的结构

脑侧面

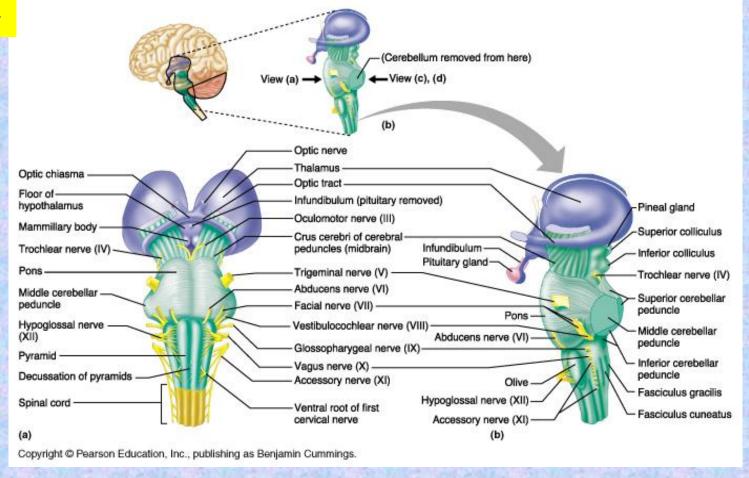


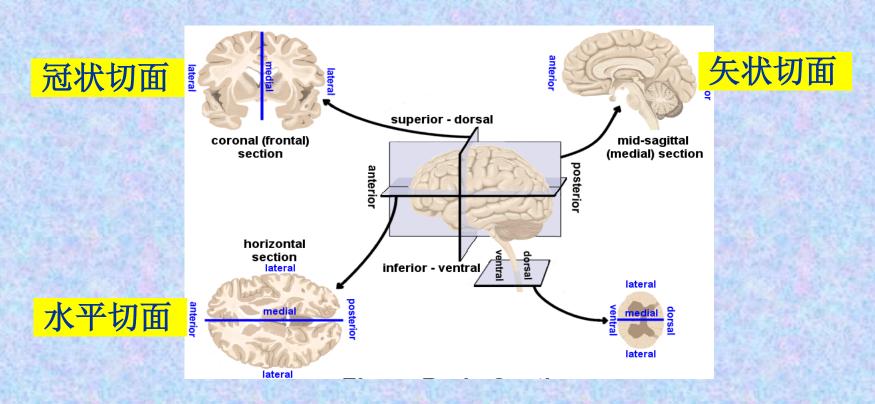
脑顶面



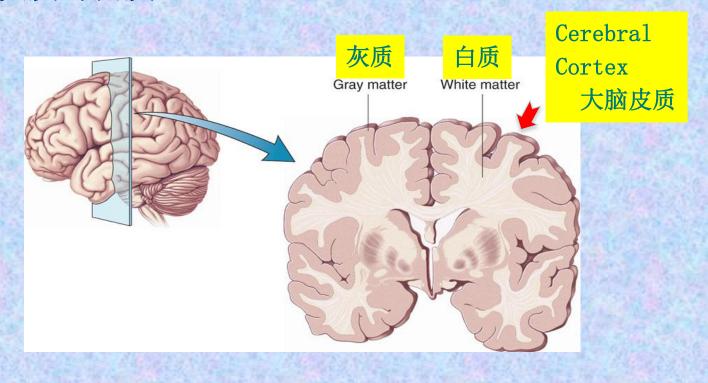
Ventral view Anterior Posterior (0.5X)

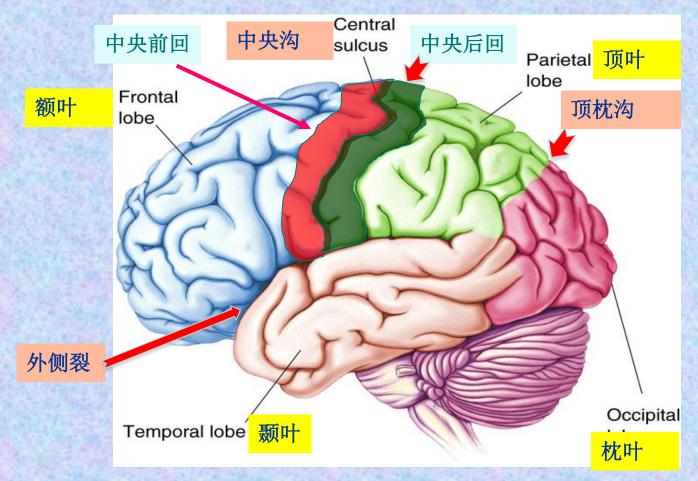
脑底面

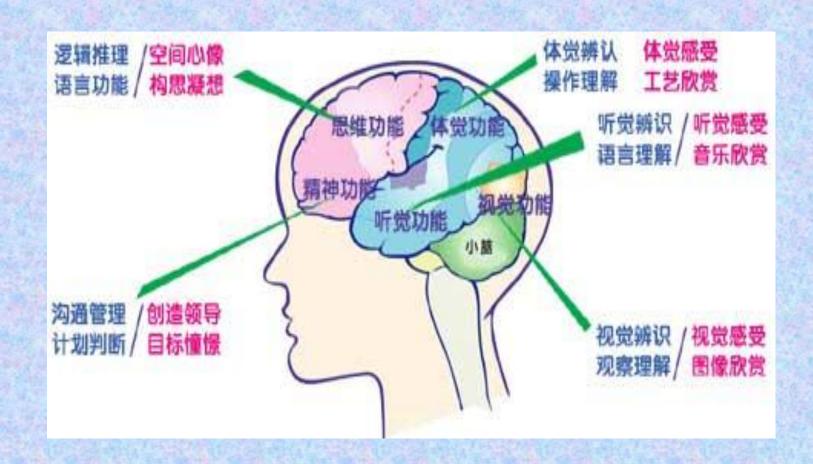


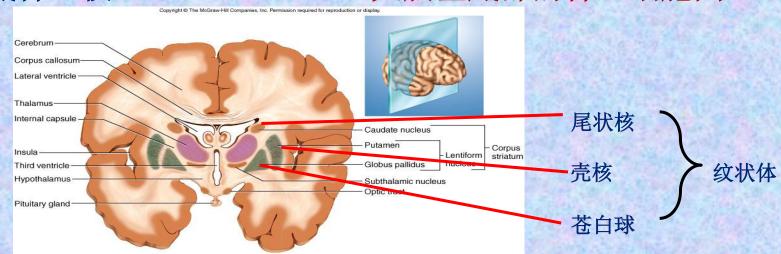

2.1 脑的部分

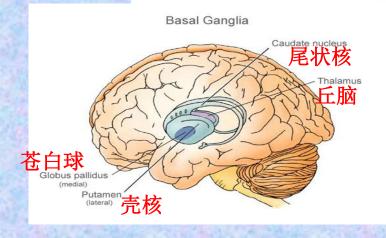
Thalamus 端脑(大脑) 端脑(大脑) 间脑 Pineal body 脑干 小脑 间脑 Hypothalamus Tegmentum Midbrain Tectum Cerebellum 小脑 Pons Medulla (1X) 延髓

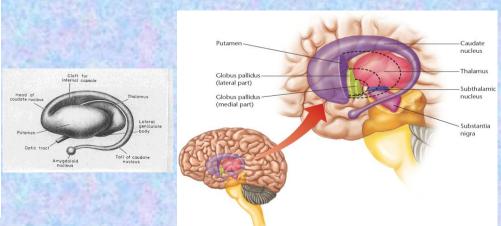

间脑与脑干

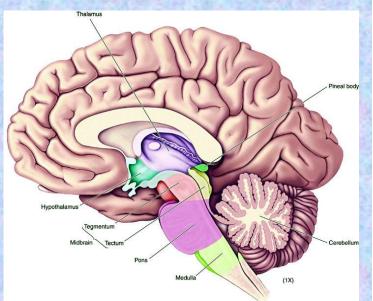

脑的切面

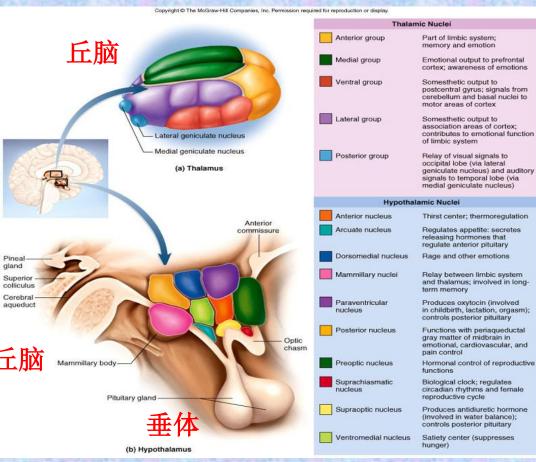

2.2 大脑的灰质与白质

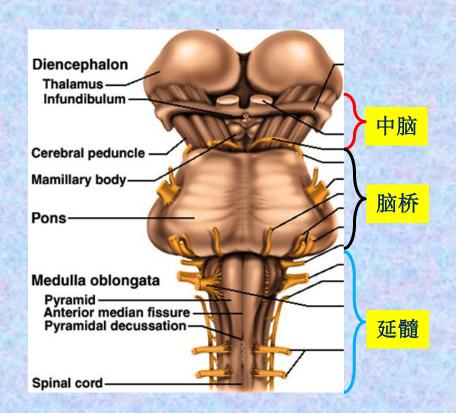

2.3 大脑主要的沟、回、裂、叶

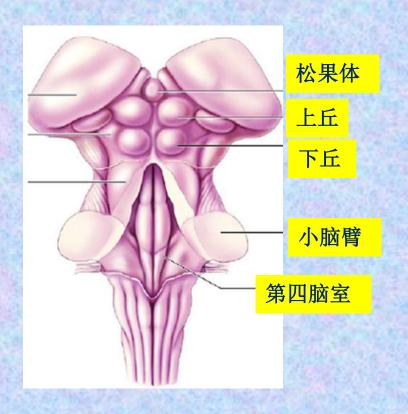


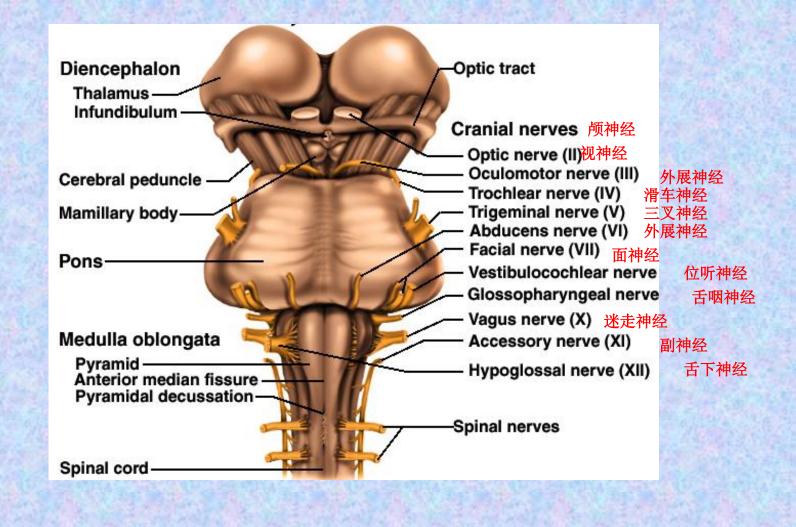


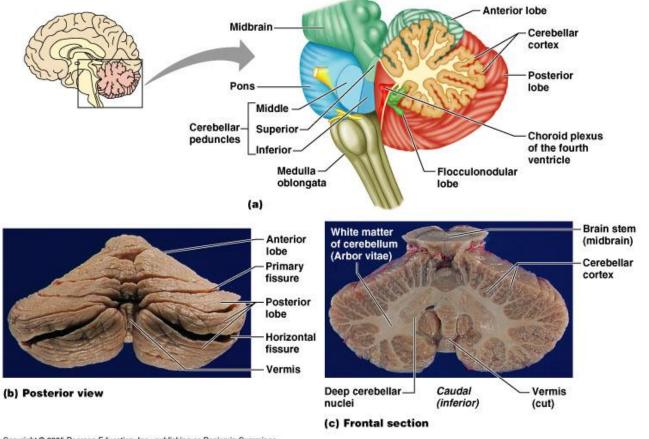

3、基底神经核 Basal Nuclei (大脑基底部的神经细胞团)

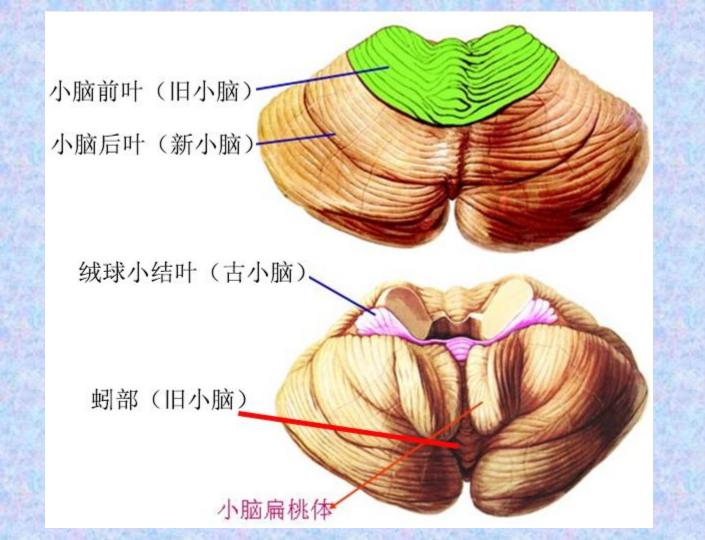


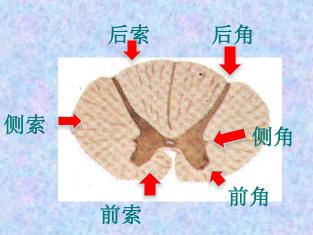


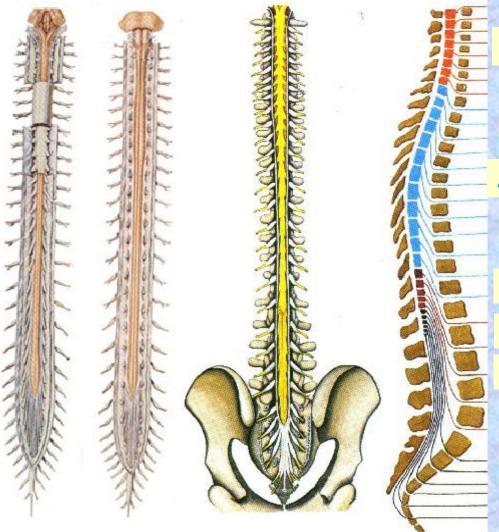

4、间脑 Diencephalon




5、脑干 Brain stem

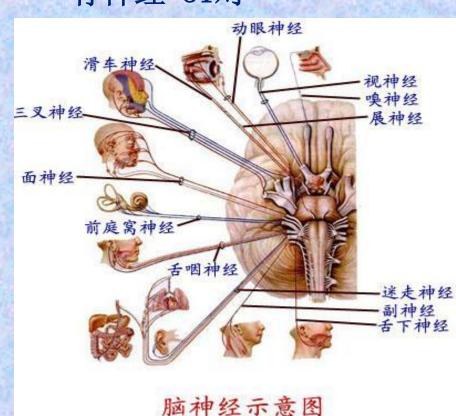


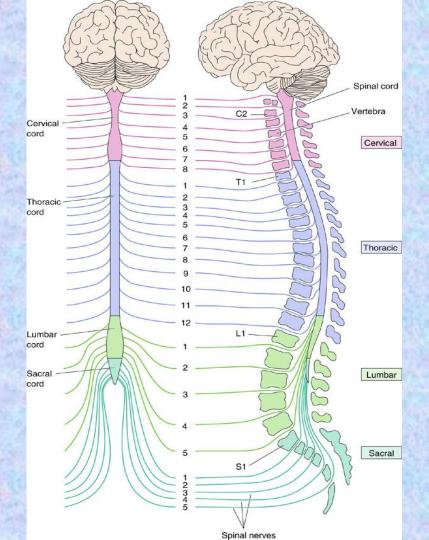



6、小脑 cerebellum

二、脊髓

颈髓8节

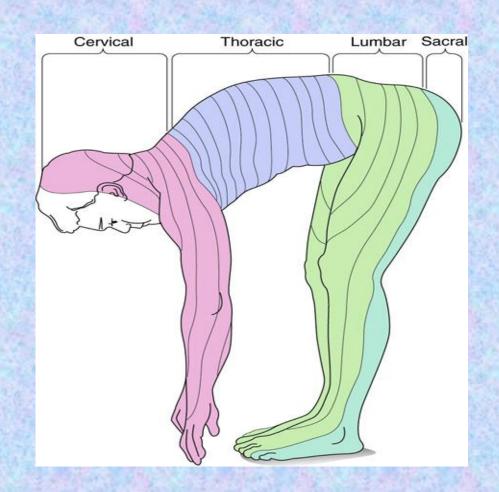

胸髓12节


腰髓5节

骶髓5节

尾髓1节

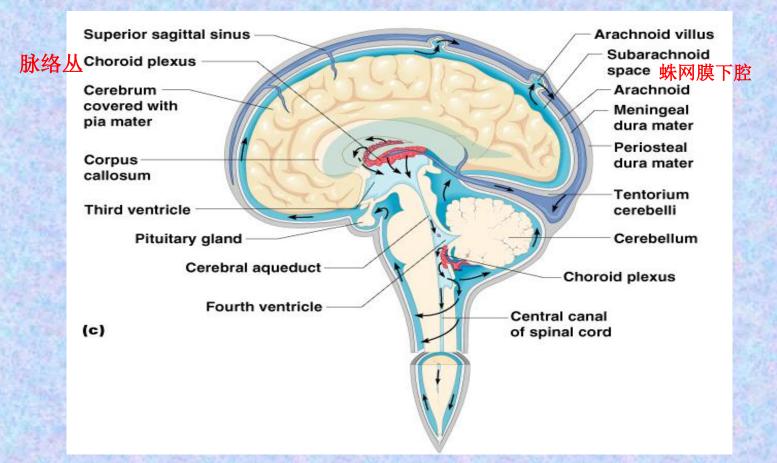
三、周围神经 颅神经 12对 脊神经 31对



颅神经12对口诀

一嗅二视三动眼 四滑五叉六外展 七面八听九舌咽 迷走副神舌下全

脊神经31对分布


颈神经8对 胸神经12对 腰神经5对 骶神经5对 尾神经1对

脑室

Lateral ventricles 侧脑室 Third-第三脑室 ventricle Thalamus 脊髓中央管 大脑导水管 Cerebral Fourth aqueduct ventricle Central canar of spinal cord (a) 第四脑室

脑脊液循环

第五节 神经系统的感觉和运动功能

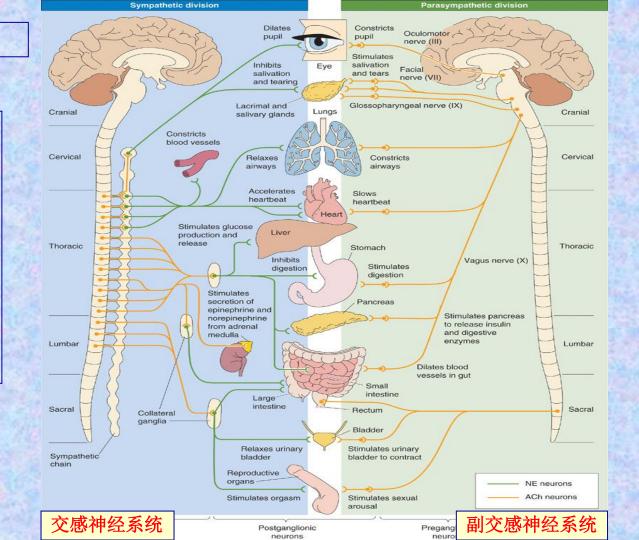
- 一、神经系统的感觉功能
- 1、接受刺激 将刺激信息转化为神经冲动
- 2、刺激信息沿特定通路传入中枢
- 3、中枢信息处理, 形成感觉
- * 有关内容将在感觉这一章 叙述

二、神经系统对躯体运动的调节功能

- 1、运动指令的形成
- 2、运动指令沿特定通路由中枢传至效应器 一 骨骼肌
- 3、神经冲动引发骨骼肌收缩
- * 有关内容将在人体运动这一章叙述

三、神经系统对内脏运动的调节

神经系统对内脏运动的调节是通过自主神经系统完成的 自主神经系统:


是指支配内脏的传出神经, 走行于颅神经和脊神经 中人交感神经系统副交感神经系统

1、自主神经系统的分布特征

- 1、在外周神经节换神经元
- 2、交感节前短,节后长;副交感节前长,节后短。
- 3、中枢不同

交感中枢位于脊髓的中部,从胸1-腰3;

副交感中枢位于两端, 颅神经3、7、9、10,和骶神 经。

2、自主神经系统的主要功能

器官	交感神经	副交感神经
循环	心跳加强加快 大部血管收缩 (腹腔内脏、皮肤、 外生殖器等) 肌肉血管可收缩(NE能)或舒张(Ach能)	心跳减弱减慢 部分血管舒张 (软脑膜、外生殖器血管等)
呼吸	支气管平滑肌舒张	支气管平滑肌缩,粘液分泌
消化	分泌粘稠唾液,抑制胃肠运动 抑制胆囊收缩,促进括约肌收缩	分泌稀薄唾液,促进胃肠运动 促进胆囊收缩,使括约肌舒张 促进胃液及胰液分泌
泌尿	逼尿肌舒,括约肌缩,	逼尿肌缩,括约肌舒
生殖	怀孕子宫缩,未孕子宫舒	
眼	瞳孔扩大,睫状肌松弛	瞳孔缩小,睫状肌缩, 促进泪腺分泌
皮肤	竖毛肌收缩,汗腺分泌	
代谢	促进糖元分解, 促进肾上腺髓质分泌	促进胰岛素分泌

3、交感神经与副交感神经的功能特点

1. 双重支配

内脏器官通常同时受交感神经和副交感神经的支配。

个别例外:如汗腺、肾上腺髓质、皮肤的血管平滑肌只接受交感神经支配。

2. 相互拮抗

通常,交感神经与副交感神经对内脏的作用相反,互相拮抗;如心脏、瞳孔等。

个别例外如对唾液腺,二者均促进其分泌,交感神经:唾液量少而粘稠,副交感神经:唾液量多而稀薄。

3. 紧张性作用 对支配器官有持续的动作电位发放

第六节 脑的高级功能

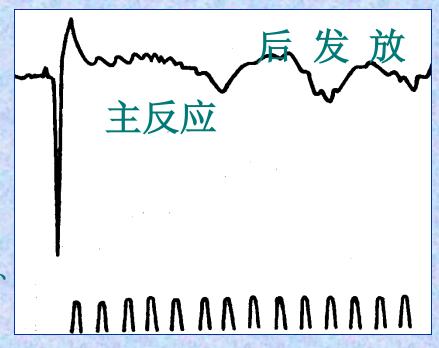
- 脑的电活动
- 觉醒与睡眠
- 学习与记忆
- 语言中枢与一侧优势

一、脑的电活动(神经元群体电活动)

脑的电活动是指脑内神经元群体在同步或去同步时的综合电位表现,在机体受到外界刺激时相关神经元产生的综合(集合)电位变化称为诱发电位,在无任何刺激时神经元群产生的综合(集合)电位变化称为自发电位。

- 1、皮层诱发电位(evoked cortical potential, ECP)
- 1.1 概念 刺激感觉传入系统时,在皮层某一局限区域引导出的较为固定的可重复的电位变化。

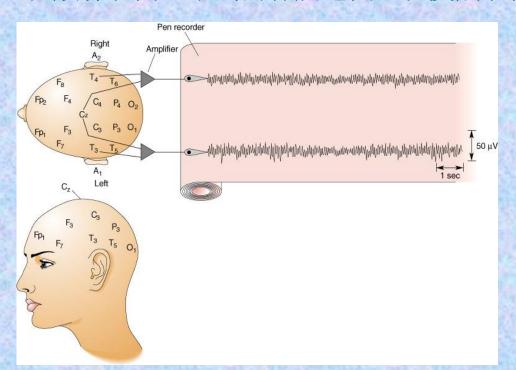
1.2 电位变化


主反应

为一先正后负的电位变化。 **潜伏期一般为5~12ms**, 主要是皮层锥体细胞电活动的综合表现

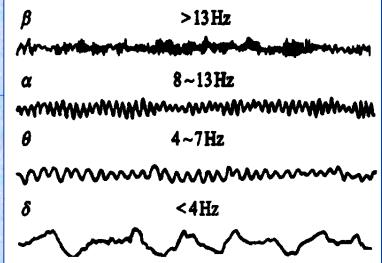
后发放

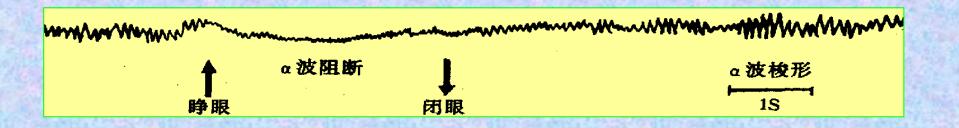
具有8~12次/秒的节律。


后发放可能是皮层与丘脑转换核(后腹核、内膝体、外膝体)之间的环路活动的结果。

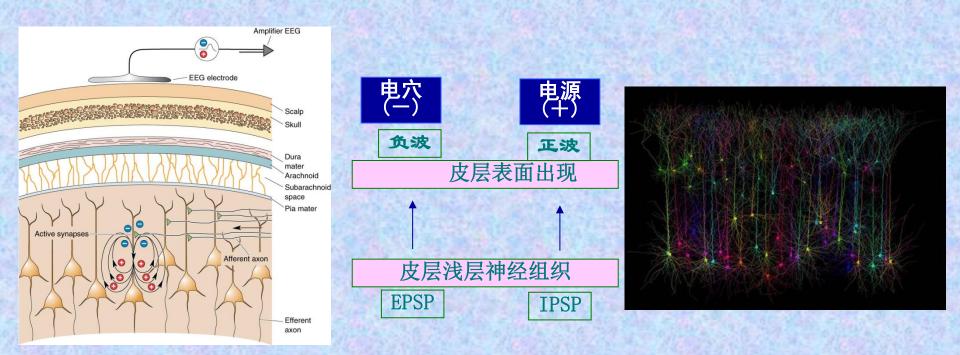
诱发电位主要用于研究某些功能的对规模发皮层诱发电位

2、自发电位 - 脑电图(electroencephalogram EEG)


在颅骨表面记录到的称脑电图,在皮层表面记录到的称皮质脑电图

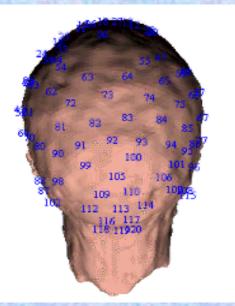


2.1 波形


	THE RESERVE OF THE PARTY OF THE	the state of the s	The second secon
	频率/Hz	波幅/μV	特征
α	8~13	20~100	安静闭眼时, 枕叶、顶叶
β	14 ~ 30	5~20	活动时,额叶
θ	4~7	100 ~150	睡眠、困倦
δ	$0.5\sim3$	20~200	深睡

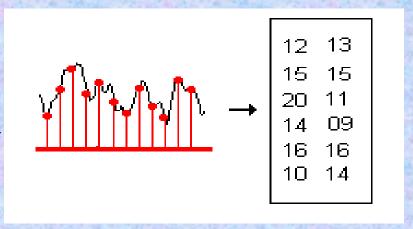
2.2 脑电波的形成机制

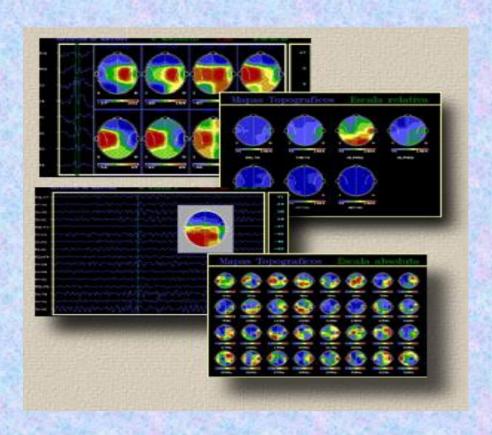
脑电波的形成是大脑皮层-丘脑间非特异性投射系统同步节律活动的结果.


因大脑皮层浅层的大量锥体细胞排列较整齐,其顶树突互相平行,它们的同步电活动易于总和形成强大的电场。

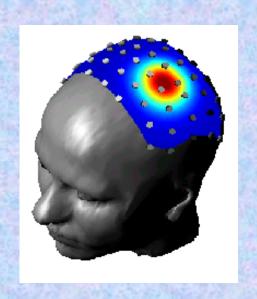
2.3 计算机辅助下的EEG分析

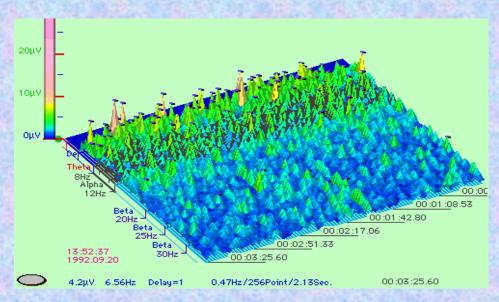
- 在计算机协助下,可以
 - 生成脑电地形图
 - 生成三维重构影像
 - 进行功率谱分析
 - 以及其它许多分析


绘制意识之图



数字化的EEG


- · 模/数转换(A/D converter)
- 采样间隔(sampling time interval):
 0.005 0.01 s
- · 实时(real time)记录
- · 定量EEG: 可用于显示、滤波、频率及 波幅分析、以及彩色地形图



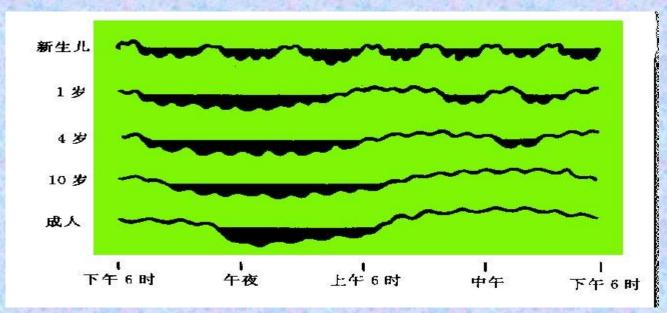
EEG脑地形图

功率谱分析

二、觉醒与睡眠

1、概述

❖ 睡眠与觉醒:两种不同的功能状态

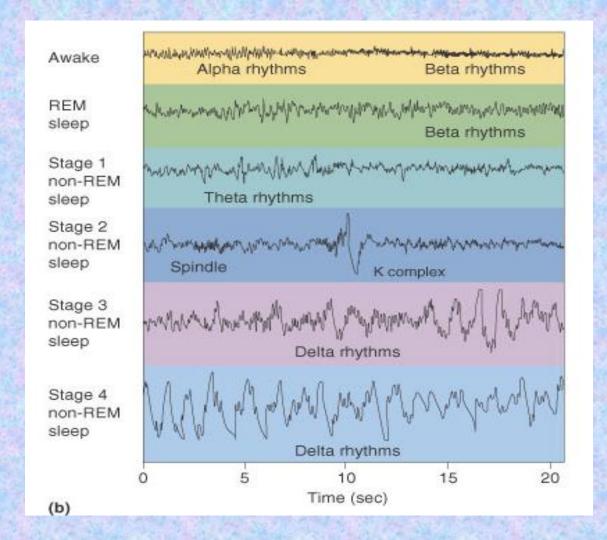

∞ 觉醒状态:与环境有主动感觉运动联系,产生复杂适应行为

∞ 睡眠状态: 联系减弱或消失, 伴有躯体和内脏功能的变化

○ 睡眠与觉醒是以自然昼夜为周期的生理活动 研究方法: EEG, EOG (electro-oculogram 电眼图). EMG (肌电图 electromyography)

2、人一生中的睡眠觉醒周期

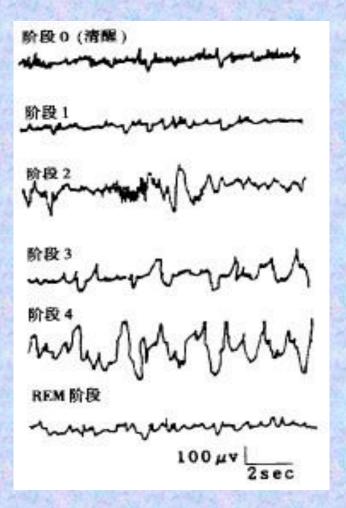
- ∞ 始于出生时,随年龄增长而变化:
- ∞ 新生儿一昼夜多个周期(60~90 min)
- ∞ 儿童两个周期(午睡与夜间睡眠)
- ∞ 成年人一个周期(与昼夜交替大致同步)


3、睡眠的脑电图特征与分期

3.1 睡眠的EEG分期:

根据脑电波的频率,通常将睡眠分为两个时相:

快波睡眠 (又称快动眼睡眠 Rapid Eye Movement REM)。 此时脑电波呈现与清醒时相 同的快波,即β波

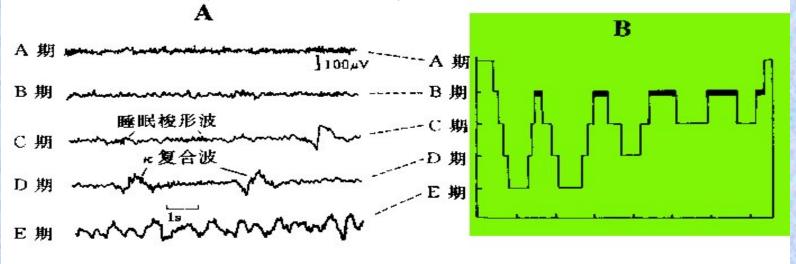

慢波睡眠 (Slow Wave Sleep SWS) 此时脑电主要为 慢频率、高振幅的波

3.2 慢波睡眠的EEG分期:

慢波睡眠的EEG分为1、2、3、4阶段,成为公认的分期:

- □ 阶段1: α波明显减少, 出现低幅快波
- 除段3: 在δ波、θ波为背景的基础上,有睡眠梭形波

3.3 快波睡眠和慢波睡眠特征


慢波睡眠: 脑电同步化

- ∞ 首次出现的阶段1及阶段2、3、4均属慢波睡眠或同步化睡眠
- 脳电特征: 在该睡眠时相, 脑电以频率逐渐减慢、幅度逐渐增高、δ波所占比例逐渐增多为特征。阶段3, 4合称为δ睡眠
- **功能特征**:循环、呼吸、交感神经等系统活动随睡眠加深而降低,且相当稳定;肌张力明显下降但保持一定肌紧张,平均20min调整睡眠姿势一次

快速眼动睡眠(REM): 去同步化脑电

- ∞ 除入睡后第一次出现的阶段1外,再出现的阶段1均为REM
- **脑电特征**: 脑电回到阶段1, 行为睡眠继续, 脑电则去同步化类似觉醒, 称为快波睡眠 或去同步化睡眠, 异相睡眠
- □ 功能特征:全身肌张力进一步降低,唤醒阈高,呼吸节律、血压、心率上升或不规则,常伴有做梦

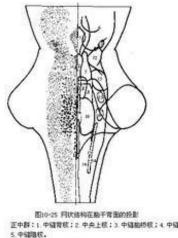
3.4 整夜睡眠EEG各阶段的持续时间及其转化规律

- **睡眠开始后**,EEG变化为阶段1→2→3→4,即随着睡眠加深,EEG频率↓ 、振幅↑、 δ 波↑,约需30 45 min ,**然后返回**,4→3→2→1,此时的阶段1 是首次开始出现的快速眼动睡眠(REM),该时相持续10 20 min,再顺序进入阶段4。一夜中循环4 5次。越近早晨,最大睡眠深度↓,不能到阶段4。
- ∞ 入睡时的阶段1及全部2, 3, 4均为慢波睡眠
- ∞ 除入睡的阶段1外,其余的阶段1均为快速眼动睡眠

3.5 睡眠的生物学意义

- ❖ 不同种属和不同发育阶段动物睡眠需求不同
 - № 睡眠时间:婴儿期16h以上,青春期8h,老年期更短;SWS-REM周期:新生儿45min,成年人90min;睡眠E期随年龄增长指数递减,60岁后几乎消失;REM睡眠婴儿占50%,2岁占30~35%,10岁后25%

生理功能变化及生物学意义:


SWS期血压→、心率→、呼吸频率→、脑血流→、 脑代谢→、机体总耗能→、垂体促激素分泌↑、 生长素分泌↑;与人体生长和体力恢复有关

REM期血压、心率、呼吸非规律性间断个, 脑

3.6 睡眠-觉醒机制

睡眠-觉醒机制-I

- ❖ 早期认为睡眠是被动的去传入机制
 - ∞ 孤立脑动物EEG持续高幅慢波,孤立头动物觉醒-睡眠周期正常; 进一步切断感觉神经则进入睡眠
 - ❖ 认为前脑的感觉传入对维持睡眠—觉醒周期必要
 - ∞ 损毁外侧被盖区特异性感觉上行通路不影响睡眠周期; 损毁脑干中轴部位网状结构上行投射则导致持续深度 睡眠
 - ❖ 认为脑干网状结构活动维持觉醒,该活动减弱则 睡眠

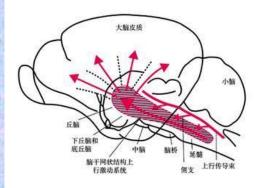
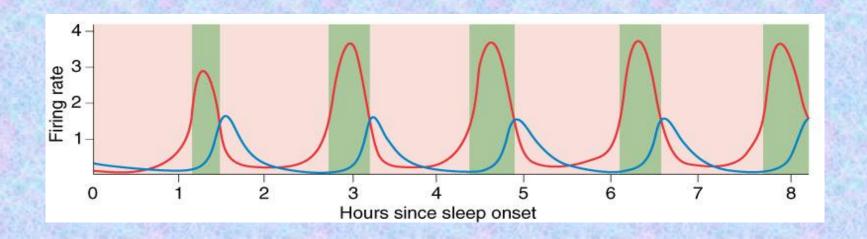


图9-20 脑干网状结构上行激动系统

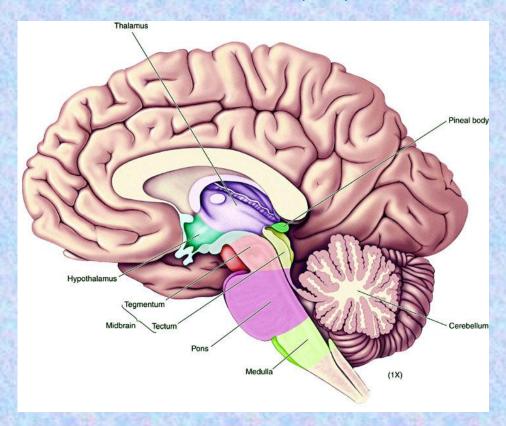
睡眠-觉醒机制-11

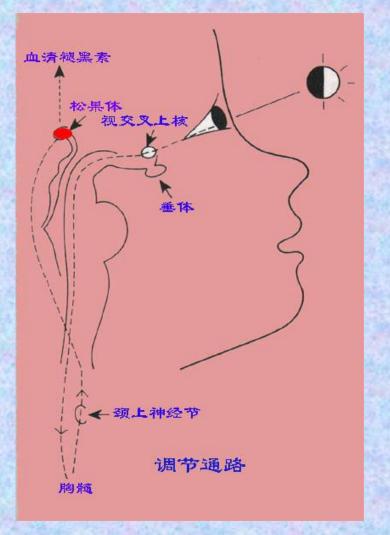

- ❖ 现代睡眠理论:睡眠是睡眠中枢引起的主动活动结果
- 中缝核群: 5-HT能神经元密集区。其头部和尾部在功能上有区别,主要由于结构联系不同:头部纤维投射到间脑和大脑皮层,尾部与脑桥背内侧背盖有纤维联系。分别损毁头部与尾部的实验表明:中缝头部形成慢波睡眠,其尾部则触发REM。
- ❖ 孤東核:激活此区可引起睡眠,但损伤该区并不引起失眠,提示其间接作用,分析表明,引发睡眠可能与调制网状结构的唤醒物质有关。
- ❖ 一般认为,中缝核头部、孤束核极其邻近的网状神经元是产生慢波睡眠的特定脑区。它们共同组成上行抑制系统,一方面调制网状结构的唤醒物质引发睡眠,另一方面还可对驱动他的网状激活系统有负反馈作用,从而诱发睡眠。

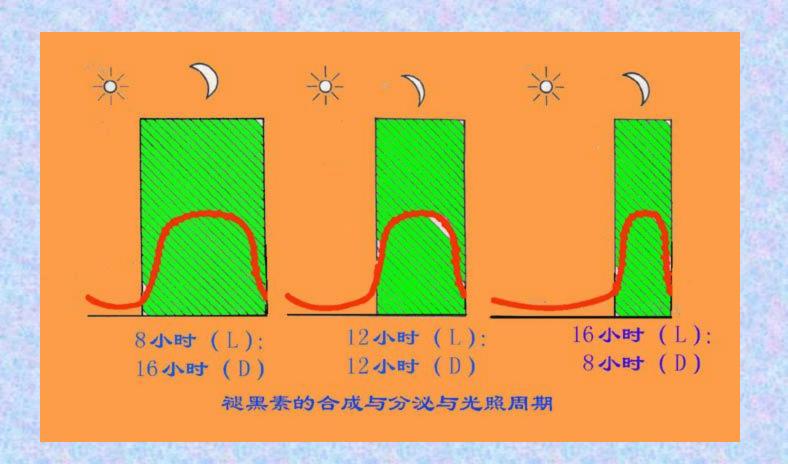
睡眠-觉醒机制-III

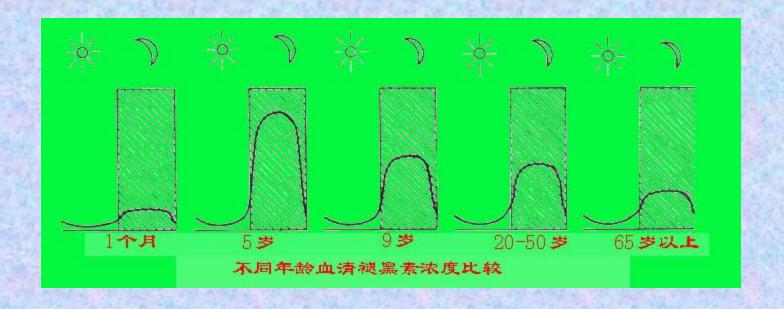
- ❖ 中枢神经递质与睡眠/觉醒: 5-HT、NE和Ach
 - ∞ 抑制5-HT可造成完全失眠,但一周后SWS和REM可恢复70%,提示有代偿机制存在
 - ∞ NE上行背束可抑制中缝核5-HT神经元,影响SWS;损毁NE导致SWS增加;损毁蓝斑 尾部,REM完全被抑制
 - ™ 阻止ACh合成可延长SWS,注射ACh到蓝斑附近可触发REM;网状大细胞核胆碱能神经元在REM期位相性快速放电;蓝斑NA神经元REM期放电减少
 - 总之,中缝核头部5-HT神经元产生和维持SWS;蓝斑尾部NA神经元及低位脑干被盖 ACh神经元在中缝核尾部5-HT触发下产生REM。交互作用导致周期性改变。

❖ REM-on细胞: 脑桥的胆碱能细胞


❖ REM-off细胞: 蓝斑及中缝核中的去甲肾上腺素能及5-羟色胺能细胞

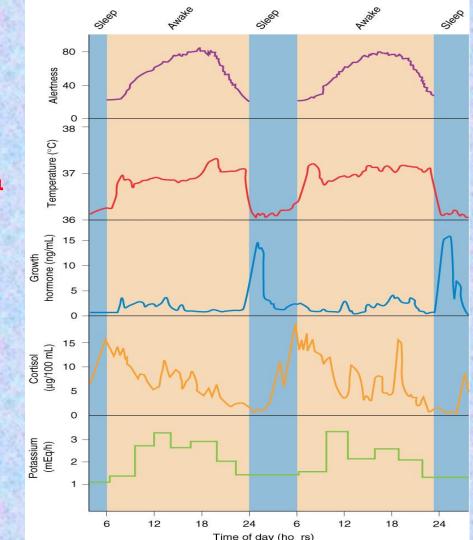



睡眠-觉醒机制-IV


- ❖ 视交叉上核:昼夜节律的可能生物钟
 - ∞ 损毁下丘脑可消除日节律
 - ∞ 切断视束或视交叉尾侧,光照仍可继续导致睡眠/觉醒周期
 - ❖ 提示存在视网膜—下丘脑直接通路
 - ∞ 基本生物钟位于下丘脑视交叉上核
 - ❖接受视网膜直接输入和中缝核纤维投射
 - ❖ 损毁可取消内源性行为和激素分泌的昼夜节律

松果体素的日夜节律

清醒状态


几种人体内的近日节律

体温

生长素

皮质素

钾离子

三、学习与记忆

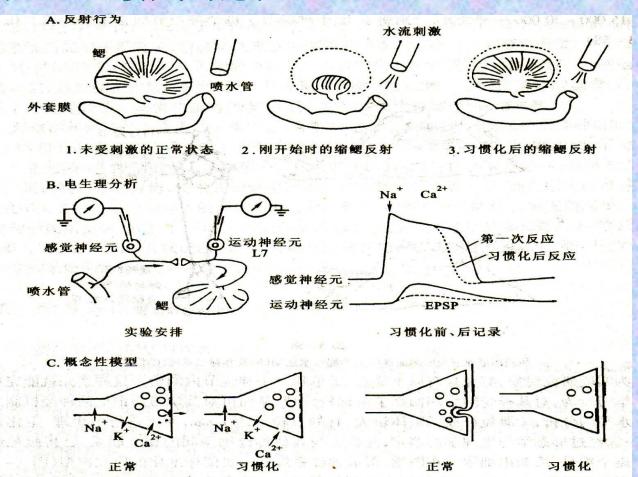
● 概念

学习 指通过神经系统接受外界环境信息而获得行为习惯的过程。

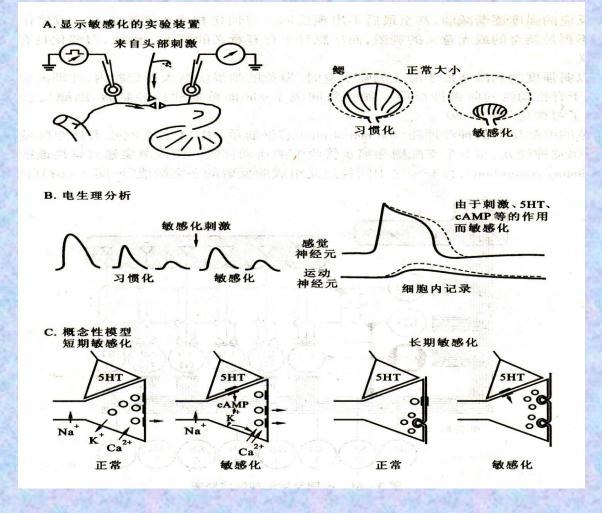
记忆 指将学习获得的信息贮存和提取再现的神经过程。

1、学习的形式

非联合型学习(nonassociactive learning) 指不需在刺激和反应之间形成某种明确联系。 不同形式刺激使突触发生习惯化和敏感化属于此型。


联合型学习(associactive learning)

指两个事件在时间上很靠近地重复发生,最后在脑内逐渐形成联系。如条件反射属于此型。


人类的学习形式多为联合型学习,可依靠文字建立许多联系。

1.1 非联合型学习 — 习惯化和敏感化

习惯化:

敏感化:

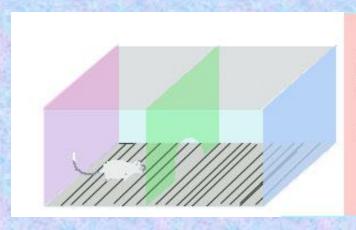
1.2 联合型学习一条件反射

1.2.1 非条件反射和 条件反射

非条件反射	条件反射
① 先天就有	① 后天获得
② 反射弧较简单、固定、 数量有限	② 反射弧较复杂、 易变、数量无限
③ 非条件刺激引起	③ 条件刺激引起
④ 各级中枢均可完成	④ 需要高级中枢参与
⑤ 多为维持生命的本能活动	⑤ 能精确适应内外环境变化

1.2.2 条件反射的形成

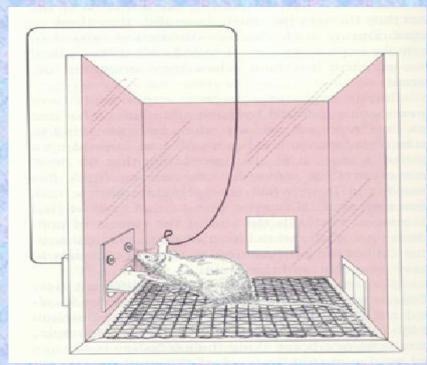
食物性条件反射


铃声 (先)无关刺激 (后加)条件刺激

肉团 (非条件刺激)

肉团 唾液分泌 非条件刺激 铃声+肉团 唾液分泌 强化* 铃声 唾液分泌 条件反射

*强化:无关刺激与非条件刺激在时间上结合应用过程。



声: 无关刺激

电: 非条件刺激

反射: 逃避

操作式条件反射

建立条件反射 踏杆 给食 (从偶然到必然)

复杂化 声光 踏杆 给食 无声光 踏杆 不给食

1.3 人类条件反射和两种信号系统学说

人类的条件反射

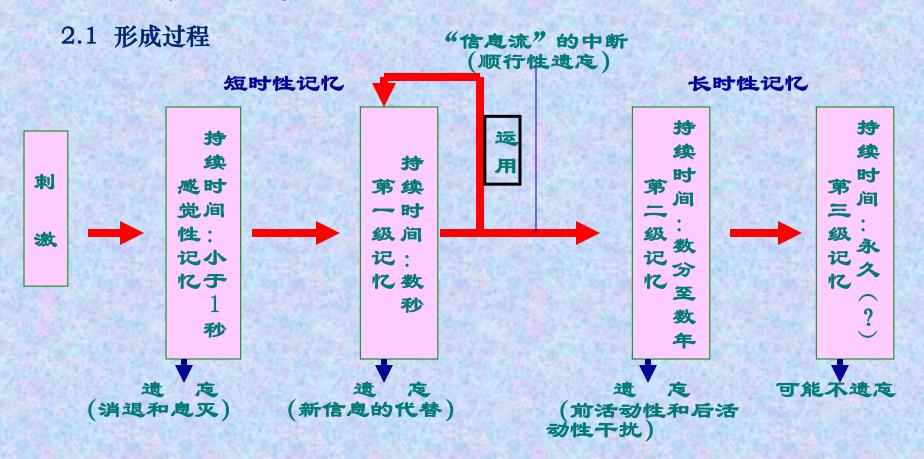
上述用于动物的实验方法,原则上也可用于人类条件反射活动的研究。

由于人类具有语词思维功能,因此还可以应用语词强化的方法来研究人类的条件反射。

1.3.1. 两种信号系统学说

第一信号:直接作用于眼、耳、鼻、舌、身等感受装置的现实具体的感觉刺激信号。

第二信号:如果说具体的信号是第一信号,那么相应的语词则是第一信号的信号,即第二信号。


第一信号系统: 是对第一信号发生反应的大脑皮质功能系统

第二信号系统: 是对第二信号发生反应的大脑皮质功能系统

1.3.2 人类条件反射特点

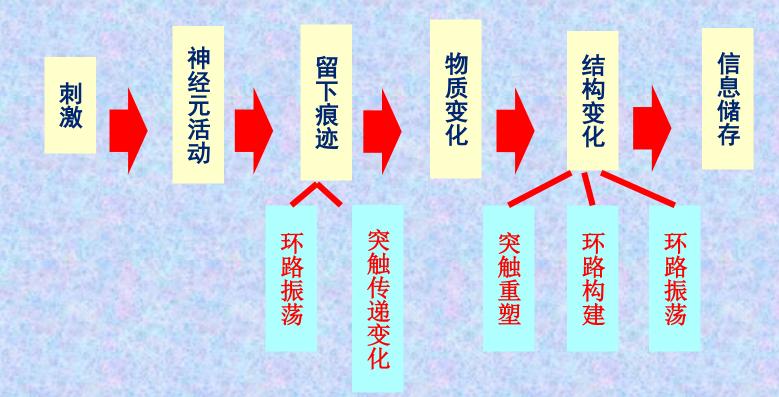
动物只有一个信号系统,相当于人的第一信号系统,而人类有两个信号系统。人可以用语词作为无关刺激和条件刺激,所以条件反射更多样化

2、记忆的形成过程与类型

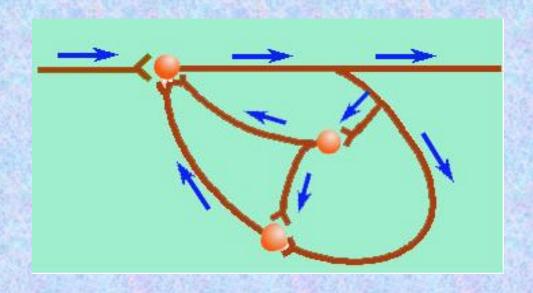
2.2 记忆类型

1) 陈述性记忆

是指与时间、地点有关的事实、情节和资料的记忆。它可以用语言陈述或 作为一种的非语言的映像形式保持在记忆中,能够被清楚的回忆,并进行推理 。这类记忆能够较快建立,但也容易退却。

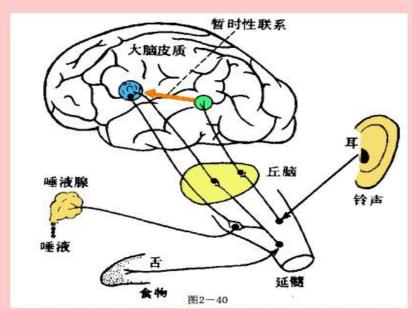

该记忆可分为情节记忆和语义记忆两个系统。

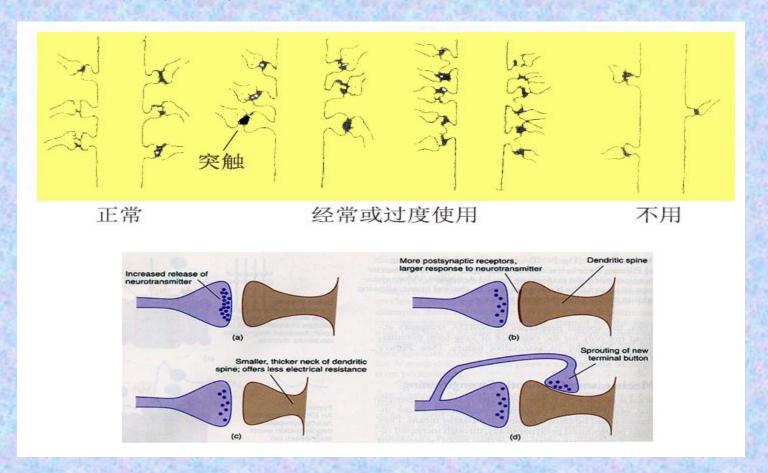
2) 非陈述性记忆


又称发射性记忆、程序性记忆。需要反复从事某种技能的操作、某项课题的学习,经过长期的经验积累才能缓慢保存下来的一种记忆。这类记忆一旦获得,不易忘却。不能用语言表达。具有自主或反射的性质。

在我们的学习中,经常这两种记忆同时参加。通过学习和使用,陈述性记忆可以转变成为非陈述性记忆,由语言的传授到最终形成习惯动作。

3、学习和记忆的机制


短时性记忆的振荡回路学说


条件反射的神经弧是生来就有的,固定的神经联系。 条件刺激或无关刺激作用于机体后也有其固定的神经通路。

巴甫洛夫认为:

条件反射是以非条件反射为基础的。条件反射的形成 是条件刺激的神经通路和非条件反射的神经通路之间的连 通。建立了一种暂时的联系。被称为暂时联系的接通学说

长时性记忆可能与新的突触关系建立有关

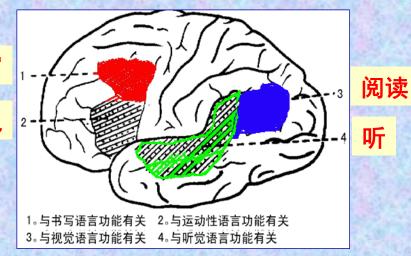
4、记忆障碍

4.1 顺行性遗忘症

近事遗忘。不能保留新近获得的信息。多见于慢性酒精中毒。发生机制可能由于信息不能从第一级记忆转入第二级记忆。

4.2 逆行性遗忘症

往事遗忘。不能回忆脑功能障碍发生之前的记忆。多见于脑震荡、电击和麻醉。


发生机制可能第二级记忆发生了扰乱,而第三级记忆不受影响。

四、大脑皮层的语言功能 与一侧优势

1、皮层语言代表区

写

说

病 名	损伤部位	企业	
失读症	3 角 回 (阅读中枢	视觉、语言功能正常, 却看不懂文字含义	
失写症	1 额中回后部 (书写中枢	能听懂语言、看懂文字、会讲话,却不会书写 ()	
感觉失语症	4 颞上回后部 (听话中枢	会讲话、会书写、能看懂文字,却听不懂谈话	
运动失语症	2 布洛卡三角 (说话中枢	能看懂文字、听懂语言, 却不会讲话	

2、大脑皮层功能的一侧优势

优势半球:语言功能所在的大脑半球通常被称为优势半球,包括:文字的识别、书写、精确计算、理性思考等。

右利者 大部分人优势半球在左侧

左利者 部分人优势半球在右侧

然而: 非语词性认识: 音乐欣赏、空间辨别、深度知、触觉等, 也是人体及其重要的功能。

双侧大脑皮层都有可能为语言活动中枢。12 岁以前,左侧优势半球还未完全建立牢固,此时 左侧大脑皮层受损,有可能在右侧建立语言活动 中枢。 神经中枢的一侧优势与遗传有一定 关系,但主要是在后天生活实践中 逐步建立的。

据统计:

		语言中枢的位置
		左 右 双
右手劳动	48	43 : 5
左手劳动	51	22 : 25 : 4
双侧混用	20	12 : 2 : 6