Chapter 5

Divide and Conquer

i P ¥ 3 Akl
i o o 2
)

_ . muﬂlhlﬂ Jesin

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.
T Copyright ® 2005 Pearson-Addison Wesley.
All rights reserved.

Divide-and-Conquer

Divide-and-conquer.
. Break up problem into several parts.
. Solve each part recursively.
. Combine solutions to sub-problems into overall solution.

Most common usage.
. Break up problem of size n into two equal parts of size 3n.
. Solve two parts recursively.
. Combine two solutions into overall solution in linear time.

Consequence.
. Brute force: n?
. Divide-and-conquer: n log n.

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications. Non-obvious sorting
List files in a directory. applications.
Organize an MP3 library. Data compression.
List names in a phone Computer graphics.
book. Interval scheduling.

Display Google PageRank Minimum spanning tree.
results. Supply chain management.
Book recommendations on
Problems become easier once Amazon.
sorted.
Find the median.
Find the closest pair.

Mergesort

Mergesort.
Divide array into two halves.
. Recursively sort each half.
. Merge two halves to make sorted whole.

divide 0O(1)
sort 2T(n/2)

merge O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How o merge efficiently?
. Linear number of comparisons.
. Use temporary array.

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
T(n) < T(|_n/2—|) + T(|_n/2j) + n otherwise

——
solve left half solve right half ~ TMCr8INg

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Proof by Recursion Tree

0 if n=1
T(n) = 2T(n/2) + n otherwise

S e —
sorting both halves merging

T(n)

/\

T(n/2) T(n/2) 2(n/2)

N N

T(n/4) T(n/4) T(n/4) T(n/4) l 4(n/4)
ogyxn

2k(n / 2K)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) n/2(2)

nlog,n

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

0 if n=1
T(n) = 2T(n/2) + n otherwise

S =
sorting both halves merging

Pf. (by induction on n)

. Base case: n=1.

. Inductive hypothesis: T(n) = nlog, n.
. Goal: show that T(2n) = 2n log, (2n).

T(2n) 2T(n) + 2n
2nlog,n + 2n
2n(logy(2n)~1) + 2n
2nlog,(2n)

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <nllgnl.
t

logzn

Pf. (by induction on n)
. Base case: n=1.
. Definen;=ln/2], n,=In/ 2l
. Induction step: assume true for1l,?2, .., n-1.

5.3 Counting Inversions

Counting Inversions

Music site tries fo match your song preferences with others.
. You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
. Myrank: 1,2, .., n.
. Your rank: ai, a,, ..., Q.

. Songs i and j inverted if i < j, but q; > q;.

Songs

A | B | C|D|E

I : 2 3 4 5

Bl : 3 4 2 -5
—

Inversions
3-2,4-2

Brute force: check all ®(n?) pairs i and j.

Applications

Applications.
. Voting theory.
. Measuring the "sortedness" of an array.
. Sensitivity analysis of Google's ranking function.
. Rank aggregation for meta-searching on the Web.
. Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

(115 4 802 Q6o i2lil3l7

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

DEDDDE OBENEE - o/

5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11,11-3, 11-7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.
- Combine: count inversions where q; and g; are in different halves,

and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

DEDDDE OBENEE - o/

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 277
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total =5+8+9 =22,

Counting Inversions: Combine

Combine: count blue-green inversions

. Assume each half is sorted.

. Count inversions where q; and g; are in different halves.
. Merge two sorted halves into sorted whole.

to maintain sorted invariant

IEDDDE BODEED
6 3 2 2 0 0

13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

T(n) < T(ln/2))+T([n/21)+ O(n) = T(n)=O(nlogn)

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

SORT — AND — COUNT (L)

1:

if list L has one element then
return (0, L).

2
3: end if

4: DIVIDE the list into two halves A and B.
5:
6
s
8

(ra.A) « SORT-AND-COUNT(A).

. (3. B) «— SORT-AND-COUNT(B).

. (ra. L") < MERGE-AND-COUNT(A. B).
. return ra +rg + rag, L.

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
. Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
. Special case of nearest neighbor, Euclidean MST.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with ®(n?) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

!

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side,

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side,
. Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side,
. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side. « seems like 6(n?)
. Return best of 3 solutions.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.

6 = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 8.
. Observation: only need to consider points within & of line L.

6 = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
. Observation: only need to consider points within & of line L.
. Sort points in 23-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
. Observation: only need to consider points within 5 of line L.
. Sort points in 23-strip by their y coordinate.
. Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Def. Let s; be the point in the 25-strip, with
the ith smallest y-coordinate.

Claim. If |i-j| > 12, then the distance between

s;and s; is at least 5.

Pf.
. No two points lie in same 38-by-33 box.

. Two points at least 2 rows apart
have distance > 2(39).

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

CLOSEST — PAIR(p1, Pa. -+ - » Py)

1. Compute separation line L such that half the points are on
each side of the line. O(nlog n)
. 01 « CLOSEST-PAIR (points in left half).
. 92 « CLOSEST-PAIR (points in right half). 2T(n/2)
0 «— MIn{o1, 02} .

. Delete all points further than ¢ from line L. O(n)

. Sort remaining points by y-coordinate. O(nlog n)

. Scan points in y-order and compare distance between each
point and next 11 neighbors. If any of these distances is less
than g, update 6. O(n)

. return 0.

Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(n log’ n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
. Each recursive returns two lists: all points sorted by y coordinate,
and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(n logn)

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit intfegers a and b, compute a + b.
. O(n) bit operations.

Multiply. Given two n-digit intfegers a and b, compute a X b.
. Brute force solution: ®(n?) bit operations.

*

Multiply
1

11

110
1101
11010
00000O
0110100

10
11
01
00
01
10
01
10
0

1

o)
11
00
01
10
01
10
01
00
00

Divide-and-Conquer Multiplication: Warmup

To multiply fwo n-digit integers:
. Multiply four 3n-digit integers.
. Add two zn-digit integers, and shift to obtain result.

T

assumes n is a power of 2

Karatsuba Multiplication

To multiply two n-digit integers:
. Add two 3n digit integers.
. Multiply three 3n-digit integers.
. Add, subtract, and shift zn-digit integers to obtain result.

2" x + X,
2"y + ¥,
2" xp + 2" '(x1J’0 +x0)’1) T XoVo

2" xy + 2" '((x1 +x0) (1 +10) — X1 _XOJ’O) T X0)o
A B A Cc C

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers
in O(n1583) bit operations.

T(n) S\T(|_n/2j) + 7([nr21) + T(1+|_n/2—|) + 0

recurs;(/e calls add, subtract, shift

= T(n) = 0n'****) = Om"*™)

Karatsuba: Recursion Tree

0 if n=1 log, n 3y Hosn
T n)= = 3 2 = (2) — 10g23 —
"= 372y + 5 otherwise Tn="% () -1 M2

T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4)

/29

T2 T T@ T2 T@) T@ T@) T 319n(2)

Matrix Multiplication

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

n
Cij = Z aik bk]
k=1

Brute force. ©(n3) arithmetic operations.

Fundamental question. Can we improve upon brute force?

Matrix Multiplication: Warmup

Divide-and-conquer.

. Divide: partition A and B into $n-by-zn blocks.

. Conquer: multiply 8 $n-by-3n recursively.

. Combine: add appropriate products using 4 matrix additions.

|:C11 C12:| _ |:A11 Al2:| v |:Bll B12:| (AUXBU) i (A12XB21)

G, G, A4 A4 B, B, (An X BIZ) + (A12 X Bzz)
(AZI X Bll) + (Azz A le)

(A21 X BIZ) + (Azz X Bzz)

T(n)= 8T(n/2) + O(n*) = T(n)=O(n’)

y
recursive calls add, form submatrices

Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

. 7 multiplications.
. 18 = 10 + 8 additions (or subtractions).

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)
. Divide: partition A and B into $n-by-3n blocks.
. Compute: 14 3n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 3n-by-3n matrices recursively.
. Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
. Assume h is a power of 2.
. T(n) = # arithmetic operations.

T(n)= 7T(n/2)+ O@*) = T(n)=0n""")=0n*"")

recursive calls add, subtract

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969] On"e")=0n**")

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971] O =% = O(n >%)
Q. Two 3-by-3 matrices with only 21 scalar multiplications?

A. Unknown. Q"= = 0n>")

Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
A. Yesl [PC(H, 1980] @(nlog70143640)20(n2.80)
Decimal wars.

. December, 1979: O(n2521813),

. January, 1980: O(n2-521801),

Fast Matrix Multiplication in Theory

Best known. O(n2373) [Williams, 2011.]

Conjecture. O(n?*) for any ¢ > 0.

Homework

.Read Chapter 5 of the textbook.

.Exercises 1, 2, 3 & 4 in Chapter 5.

