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Divide-and-Conquer

Divide-and-conquer.
n Break up problem into several parts.
n Solve each part recursively.
n Combine solutions to sub-problems into overall solution.

Most common usage.
n Break up problem of size n into two equal parts of size ½n.
n Solve two parts recursively.
n Combine two solutions into overall solution in linear time.

Consequence.
n Brute force:  n2.
n Divide-and-conquer:  n log n.



5.1  Mergesort
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Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone 
book.
Display Google PageRank 
results.

Problems become easier once 
sorted.

Find the median. 
Find the closest pair.
. . .

Non-obvious sorting 
applications.

Data compression.
Computer graphics.
Interval scheduling.
Minimum spanning tree.
Supply chain management.
Book recommendations on 
Amazon.
. . .

Sorting

Sorting.  Given n elements, rearrange in ascending order.
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Mergesort

Mergesort.
n Divide array into two halves.
n Recursively sort each half.
n Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T O(n)

2T(n/2)

O(1)
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
n Linear number of comparisons.
n Use temporary array.

A G L O R H I M S T

A G H I
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A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input of size n.

Mergesort recurrence.  

Solution.  T(n) = O(n log2 n). 

Assorted proofs.  We describe several ways to prove this recurrence. 
Initially we assume n is a power of 2 and replace  with =.

    



T(n) 
 0 if  n 1
T n /2  
solve left half

1 2 4 3 4 
 T n /2  

solve right half
1 2 4 3 4 

 n
merging
{ otherwise
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Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

    



T(n) 
0 if  n 1
2T(n /2)

sorting both halves
1 2 4 3 4  n

merging
{ otherwise
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Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)
n Base case:  n = 1.
n Inductive hypothesis:  T(n) =  n log2 n.
n Goal:  show that T(2n) =  2n log2 (2n).

  



T(2n)  2T(n)    2n
 2n log2 n    2n
 2n log2 (2n)1    2n
 2n log2 (2n)

    



T(n) 
0 if  n 1
2T(n /2)

sorting both halves
1 2 4 3 4  n

merging
{ otherwise
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Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)   n lg n.

Pf.   (by induction on n)
n Base case:  n = 1.
n Define n1 = n / 2 ,  n2 = n / 2.
n Induction step:  assume true for 1, 2, ... , n–1.

  



T(n)  T(n1)    T(n2 )    n
 n1 lgn1    n2 lgn2    n
 n1 lgn2    n2 lgn2    n
 n lgn2    n
 n( lgn 1 )    n
 n lgn 

  



n2  n /2 

 2 lg n  / 2 
 2 lg n  / 2

 lgn2  lg n  1

    



T(n) 
 0 if  n 1
T n /2  
solve left half

1 2 4 3 4 
 T n /2  

solve right half
1 2 4 3 4 

 n
merging
{ otherwise








log2n



5.3  Counting Inversions
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Music site tries to match your song preferences with others.
n You rank n songs.
n Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.
n My rank:  1, 2, …, n.
n Your rank:  a1, a2, …, an.
n Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all (n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2
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Applications

Applications.
n Voting theory.
n Measuring the "sortedness" of an array.
n Sensitivity analysis of Google's ranking function. 
n Rank aggregation for meta-searching on the Web.
n Nonparametric statistics  (e.g., Kendall's Tau distance).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
n Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).



4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
n Divide:  separate list into two pieces.
n Conquer: recursively count inversions in each half.
n Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions 
n Assume each half is sorted.
n Count inversions where ai and aj are in different halves. 
n Merge two sorted halves into sorted whole.

 

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  



T(n)   T n /2  T n /2   O(n)  T(n)  O(n log n)

6 3 2 2 0 0

to maintain sorted invariant
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count]  A and B are sorted.
Post-condition.  [Sort-and-Count]  L is sorted.



5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
n Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
n Special case of nearest neighbor, Euclidean MST.

Brute force.  Check all pairs of points p and q with (n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.
n Divide:  draw vertical line L so that roughly ½n points on each side.

L
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Closest Pair of Points

Algorithm.
n Divide:  draw vertical line L so that roughly ½n points on each side.
n Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.
n Divide:  draw vertical line L so that roughly ½n points on each side.
n Conquer:  find closest pair in each side recursively.
n Combine:  find closest pair with one point in each side.
n Return best of 3 solutions.

12

21
8

L

seems like (n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
n Observation:  only need to consider points within  of line L.

12

21



L

 = min(12, 21)
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12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
n Observation:  only need to consider points within  of line L.
n Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)
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12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
n Observation:  only need to consider points within  of line L.
n Sort points in 2-strip by their y coordinate.
n Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j|  12, then the distance between
si and sj is at least .
Pf.
n No two points lie in same ½-by-½ box.
n Two points at least 2 rows apart

have distance   2(½).   ▪

Fact.  Still true if we replace 12 with 7.



27

29
30

31

28

26

25



½

 2 rows
½

½

39

i

j
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Closest Pair Algorithm
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.
n Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate.
n Sort by merging two pre-sorted lists.

  



T(n)  2T n /2   O(n)  T(n)  O(n log n)

  



T(n)  2T n /2   O(n log n)  T(n)    O(n log2 n)



5.5  Integer Multiplication
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Integer Arithmetic

Add.  Given two n-digit integers a and b, compute a + b.
n O(n) bit operations.

Multiply.  Given two n-digit integers a and b, compute a × b.
n Brute force solution: (n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Multiply
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To multiply two n-digit integers:
n Multiply four ½n-digit integers.
n Add two ½n-digit integers, and shift to obtain result.

Divide-and-Conquer Multiplication:  Warmup

    



T(n)    4T n /2 
recursive calls
1 2 4 3 4 

   (n)
add, shift
1 2 3    T(n)  (n2 )

  



x  2n / 2  x1    x0

y  2n / 2  y1    y0

xy  2n / 2  x1  x0  2n / 2  y1   y0   2n  x1y1   2n / 2  x1y0  x0 y1   x0 y0

assumes n is a power of 2
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To multiply two n-digit integers:
n Add two ½n digit integers.
n Multiply three ½n-digit integers.
n Add, subtract, and shift ½n-digit integers to obtain result.

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit integers 
in O(n1.585) bit operations.

Karatsuba Multiplication

  



x  2n / 2  x1    x0

y  2n / 2  y1    y0

xy  2n  x1y1   2n / 2  x1y0  x0 y1   x0 y0

 2n  x1y1   2n / 2  (x1  x0 ) (y1  y0 )   x1y1  x0 y0   x0 y0

    



T(n)  T n /2    T n /2    T 1 n /2  
recursive calls

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 
 (n)

add, subtract, shift
1 2 4 3 4 

 T(n)    O(n log 2 3 )    O(n1.585 )

A B CA C
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Karatsuba:  Recursion Tree

  



T(n) 
0 if  n 1

3T(n /2)    n otherwise




n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

 T(n) 

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

  



T(n)  n  3
2 

k

k0

log2 n

    
3
2 

1 log2 n 1
3
2 1

    3nlog2 3  2



Matrix Multiplication
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Matrix multiplication.  Given two n-by-n matrices A and B, compute C = AB.

Brute force.   (n3) arithmetic operations.

Fundamental question.  Can we improve upon brute force?

Matrix Multiplication

  



cij  a ik bkj
k1

n



    



c11 c12 L c1n

c21 c22 L c2n

M M O M
cn1 cn2 L cnn





















a11 a12 L a1n

a21 a22 L a2n

M M O M
an1 an2 L ann





















b11 b12 L b1n

b21 b22 L b2n

M M O M
bn1 bn2 L bnn
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Matrix Multiplication:  Warmup

Divide-and-conquer.
n Divide:  partition A and B into ½n-by-½n blocks.
n Conquer:  multiply 8 ½n-by-½n recursively.
n Combine:  add appropriate products using 4 matrix additions.

  



C11  A11  B11    A12  B21 
C12  A11  B12    A12  B22 
C21  A21  B11    A22  B21 
C22  A21  B12    A22  B22 

  



C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22











    



T(n)  8T n /2 
recursive calls
1 2 4 3 4    (n2 )

add, form submatrices
1 2 4 4 3 4 4  T(n)  (n3)
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Matrix Multiplication:  Key Idea

Key idea.  multiply 2-by-2 block matrices with only 7 multiplications.

n 7 multiplications.
n 18 = 10 + 8 additions (or subtractions).

  



P1  A11  (B12  B22 )
P2  ( A11  A12 )  B22

P3  ( A21  A22 )  B11

P4  A22  (B21  B11)
P5  ( A11  A22 )  (B11  B22 )
P6  ( A12  A22 )  (B21  B22 )
P7  ( A11  A21)  (B11  B12 )  



C11  P5  P4  P2  P6

C12  P1  P2

C21  P3  P4

C22  P5  P1  P3  P7

  



C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22
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Fast Matrix Multiplication

Fast matrix multiplication.  (Strassen, 1969)
n Divide:  partition A and B into ½n-by-½n blocks.
n Compute: 14 ½n-by-½n matrices via 10 matrix additions.
n Conquer:  multiply 7 ½n-by-½n matrices recursively.
n Combine:  7 products into 4 terms using 8 matrix additions.

Analysis.
n Assume n is a power of 2.
n T(n) = # arithmetic operations.

    



T(n)  7T n /2 
recursive calls
1 2 4 3 4 

 (n2 )
add, subtract

1 2 4 3 4  T(n)  (n log2 7 )  O(n2.81)
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Fast Matrix Multiplication in Theory

Q.  Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A.  Yes!   [Strassen, 1969]

Q.  Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A.  Impossible.  [Hopcroft and Kerr, 1971]

Q.  Two 3-by-3 matrices with only 21 scalar multiplications?
A.  Unknown.

Q.  Two 70-by-70 matrices with only 143,640 scalar multiplications?
A.  Yes!   [Pan, 1980]

Decimal wars.
n December, 1979:  O(n2.521813).
n January, 1980:     O(n2.521801).

  



 (n log3 21)  O(n 2.77 )

  



 (n log70 143640 )  O(n 2.80 )

  



(n log2 6)  O(n 2.59 )

  



(n log2 7 )  O(n 2.81)
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Fast Matrix Multiplication in Theory

Best known.  O(n2.373)   [Williams, 2011.]

Conjecture.  O(n2+) for any  > 0. 



Homework

•Read Chapter 5 of the textbook.

•Exercises 1, 2, 3 & 4 in Chapter 5.
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