

Chapter 8

NP and Computational Intractability

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns. Ex.

-
- Divide-and-conquer. 0(n log n) FFT.
- **Dynamic programming.** $O(n^2)$ edit distance.
- **Reductions.**

n Greed. **Comparison Comparison C**

Algorithm design anti-patterns.

-
-
-

NP-completeness. $O(n^k)$ algorithm unlikely. **PSPACE-completeness.** $O(n^k)$ certification algorithm unlikely. . Undecidability. No algorithm possible.

8.1 Polynomial-Time Reductions

Classify Problems According to Computational Requirements

Q. Which problems will we be able to solve in practice?

A working definition. [Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms.

Primality testing Factoring

Classify Problems

Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot.

Huge number of fundamental problems have defied classification for decades.

This chapter. Show that these fundamental problems are "computationally equivalent" .

Polynomial-Time Reduction

Desiderata '. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- . Polynomial number of standard computational steps, plus
- . Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_{p} Y$.

Remarks.

- $\bullet\,\,$ We pay for time to write down instances sent to black box $\,\,\Rightarrow\,\,$ instances of Y must be of polynomial size.
- . Note: Cook reducibility.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X \leq_{P} Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \leq_{P} Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$.

Reduction By Simple Equivalence

Basic reduction strategies.

- **Execuction by simple equivalence.**
- **EXEL A** Reduction from special case to general case.
- **Execuction by encoding with gadgets.**

Independent Set

INDEPENDENT SET: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6 ? Yes.

Ex. Is there an independent set of size \geq 7? No.

Vertex Cover

VERTEX COVER: Given a graph $G = (V, E)$ and an integer k , is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size \leq 4? Yes.

Ex. Is there a vertex cover of size \leq 3? No.

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{P} INDEPENDENT-SET.

Pf. We show S is an independent set iff $V - S$ is a vertex cover.

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{P} INDEPENDENT-SET.

Pf. We show S is an independent set iff $V - S$ is a vertex cover.

\Rightarrow

- . Let S be any independent set.
- . Consider an arbitrary edge (u, v).
- Sindependent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V S$ or $v \in V S$.
- **.** Thus, $V S$ covers (u, v).

\leftarrow

- l Let $V S$ be any vertex cover.
- . Consider two nodes $u \in S$ and $v \in S$.
- **.** Observe that $(u, v) \notin E$ since $V S$ is a vertex cover.
- . Thus, no two nodes in S are joined by an edge \Rightarrow S independent set. •

Reduction from Special Case to General Case

Basic reduction strategies.

- **EXECUCTION BY Simple equivalence.**
- § Reduction from special case to general case.
- **Example 2 Reduction by encoding with gadgets.**

Set Cover

SET COVER: Given a set U of elements, a collection S_1, S_2, \ldots , S_m of subsets of U, and an integer k, does there exist a collection of \leq k of these sets whose union is equal to U?

Ex:

Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER $\leq p$ SET-COVER.

Pf. Given a VERTEX-COVER instance $G = (V, E)$, k, we construct a set cover instance whose size equals the size of the vertex cover instance.
Construction.

. Create SET-COVER instance:

 $-$ k = k, U = E, S_v = {e \in E : e incident to v }

. Set-cover of size \leq k iff vertex cover of size \leq k. \cdot

8.2 Reductions via "Gadgets"

Basic reduction strategies.

- **EXE** Reduction by simple equivalence.
- § Reduction from special case to general case.
- **Reduction via "gadgets."**

Satisfiability

Literal: A Boolean variable or its negation. x_i or x_i

Clause: A disjunction of literals.
Conjunctive normal form: A propositional $C_j = x_1 \vee \overline{x_2} \vee x_3$

formula Φ that is the conjunction of clauses.

 $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$

SAT: Given CNF formula Φ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Ex:
$$
(\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})
$$

\nYes: x_1 = true, x_2 = true x_3 = false.

3 Satisfiability Reduces to Independent Set

Claim. $3-SAT \leq p$ INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

G

- F G contains 3 vertices for each clause, one for each literal.
- **.** Connect 3 literals in a clause in a triangle.
- . Connect literal to each of its negations.

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.

- . S must contain exactly one vertex in each triangle.
- **.** Set these literals to true.
- Truth assignment is consistent and all clauses are satisfied.

 $Pf \nightharpoonup$ Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. •

Review

Basic reduction strategies.

- **Simple equivalence:** INDEPENDENT-SET \equiv $\frac{1}{2}$ VERTEX-COVER.
- **Special case to general case:** VERTEX-COVER \leq p SET-COVER.
- **Encoding with gadgets: 3-SAT** \leq **P** INDEPENDENT-SET.

Transitivity. If $X \leq_{\rho} Y$ and $Y \leq_{\rho} Z$, then $X \leq_{\rho} Z$. Pf idea. Compose the two algorithms.

Ex: $3\text{-}SAT \leq p$ INDEPENDENT-SET $\leq p$ VERTEX-COVER $\leq p$ SET-COVER.

Self-Reducibility

Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem $\leq_{\rm P}$ decision version.

- . Applies to all (NP-complete) problems in this chapter.
- . Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.

- . (Binary) search for cardinality k^* of min vertex cover.
- Find a vertex v such that $G \{v\}$ has a vertex cover of size $\leq k^* 1$.
	- any vertex in any min vertex cover will have this property
- **Finclude v in the vertex cover.**
- **Recursively find a min vertex cover in** $G \{v\}$ **.**