
1

Chapter 8

NP and Computational
Intractability

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



2

Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns. Ex.
n Greed. O(n log n) interval scheduling.
n Divide-and-conquer. O(n log n) FFT.
n Dynamic programming. O(n2) edit distance.
n Reductions. 

Algorithm design anti-patterns.
n NP-completeness. O(nk) algorithm unlikely.
n PSPACE-completeness. O(nk) certification algorithm unlikely.
n Undecidability. No algorithm possible.



8.1  Polynomial-Time Reductions



4

Classify Problems According to Computational Requirements

Q.  Which problems will we be able to solve in practice?

A working definition.  [Cobham 1964, Edmonds 1965, Rabin 1966]  
Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover



5

Classify Problems

Desiderata.  Classify problems according to those that can be solved in 
polynomial-time and those that cannot.

Huge number of fundamental problems have defied classification for 
decades.

This chapter.  Show that these fundamental problems are 
"computationally equivalent" .



6

Polynomial-Time Reduction

Desiderata'.  Suppose we could solve X in polynomial-time. What else 
could we solve in polynomial time?

Reduction.  Problem X polynomial reduces to problem Y if arbitrary 
instances of problem X can be solved using:
n Polynomial number of standard computational steps, plus
n Polynomial number of calls to oracle that solves problem Y.

Notation.  X  P Y. 

Remarks.
n We pay for time to write down instances sent to black box    

instances of Y must be of polynomial size.
n Note:  Cook reducibility.



7

Polynomial-Time Reduction

Purpose.  Classify problems according to relative difficulty.

Design algorithms.  If X  P Y and Y can be solved in polynomial-time,  
then X can also be solved in polynomial time.

Establish intractability.  If X  P Y and X cannot be solved in 
polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence.  If X  P Y and Y  P X, we use notation X  P Y.



Reduction By Simple Equivalence

Basic reduction strategies.
§ Reduction by simple equivalence.
§ Reduction from special case to general case.
§ Reduction by encoding with gadgets.



9

Independent Set

INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S  V such that |S|  k, and for each edge at most 
one of its endpoints is in S?

Ex.  Is there an independent set of size  6?  Yes.
Ex.  Is there an independent set of size  7?  No.

independent set



10

Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S  V such that |S|  k, and for each edge, at least 
one of its endpoints is in S?

Ex.  Is there a vertex cover of size  4?  Yes.
Ex.  Is there a vertex cover of size  3?  No.

vertex cover



11

Vertex Cover and Independent Set

Claim.  VERTEX-COVER P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V  S is a vertex cover.

vertex cover

independent set



12

Vertex Cover and Independent Set

Claim.  VERTEX-COVER P INDEPENDENT-SET.
Pf.  We show S is an independent set iff V  S is a vertex cover.


n Let S be any independent set.
n Consider an arbitrary edge (u, v).
n S independent  u  S or v  S    u  V  S or v  V  S.
n Thus, V  S covers (u, v).

 
n Let V  S be any vertex cover.
n Consider two nodes u  S and v  S.
n Observe that (u, v)  E since V  S is a vertex cover.
n Thus, no two nodes in S are joined by an edge   S independent set. ▪



Reduction from Special Case to General Case

Basic reduction strategies.
§ Reduction by simple equivalence.
§ Reduction from special case to general case.
§ Reduction by encoding with gadgets.



14

Set Cover

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , Sm of 
subsets of U, and an integer k, does there exist a collection of  k of 
these sets whose union is equal to U?

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 =  {1, 2, 6, 7}



15

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover

Claim.  VERTEX-COVER  P SET-COVER.
Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct a set 
cover instance whose size equals the size of the vertex cover instance.

Construction.  
n Create SET-COVER instance:

– k = k,  U = E,  Sv = {e  E : e incident to v }
n Set-cover of size  k iff vertex cover of size  k.  ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1 

e2 e3 

e5 

e4 

e6 

e7 



8.2  Reductions via "Gadgets"

Basic reduction strategies.
§ Reduction by simple equivalence.
§ Reduction from special case to general case.
§ Reduction via "gadgets."



17

Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional
formula  that is the conjunction of clauses.

SAT:  Given CNF formula , does it have a satisfying truth assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability

  



C j  x1  x2  x3

  



xi   or  xi

  



   C1 C2  C3 C4



x1  x2  x3   x1  x2  x3   x2  x3   x1  x2  x3 



18

3 Satisfiability Reduces to Independent Set

Claim.  3-SAT  P INDEPENDENT-SET.
Pf.  Given an instance  of 3-SAT, we construct an instance (G, k) of 
INDEPENDENT-SET that has an independent set of size k iff  is 
satisfiable.

Construction.
n G contains 3 vertices for each clause, one for each literal.
n Connect 3 literals in a clause in a triangle.
n Connect literal to each of its negations.

  



x2

  



    x1  x2  x3   x1  x2  x3   x1  x2  x4 
  



x3

  



x1

  



x1   



x2   



x4

  



x1  



x2

  



x3

k = 3

G



19

3 Satisfiability Reduces to Independent Set

Claim.  G contains independent set of size k = || iff  is satisfiable.

Pf.    Let S be independent set of size k.
n S must contain exactly one vertex in each triangle.
n Set these literals to true.
n Truth assignment is consistent and all clauses are satisfied.

Pf     Given satisfying assignment, select one true literal from each 
triangle. This is an independent set of size k.  ▪

  



x2   



x3

  



x1

  



x1   



x2   



x4

  



x1  



x2

  



x3

k = 3

G

  



    x1  x2  x3   x1  x2  x3   x1  x2  x4 



20

Review

Basic reduction strategies.
n Simple equivalence:  INDEPENDENT-SET  P VERTEX-COVER.
n Special case to general case:  VERTEX-COVER  P SET-COVER.
n Encoding with gadgets:  3-SAT  P INDEPENDENT-SET.

Transitivity.  If X  P Y and Y  P Z, then X  P Z.
Pf idea.  Compose the two algorithms.

Ex:  3-SAT  P INDEPENDENT-SET  P VERTEX-COVER  P SET-COVER.



21

Self-Reducibility

Decision problem.  Does there exist a vertex cover of size   k?
Search problem.  Find vertex cover of minimum cardinality.

Self-reducibility.  Search problem  P decision version.
n Applies to all (NP-complete) problems in this chapter.
n Justifies our focus on decision problems.

Ex:  to find min cardinality vertex cover.
n (Binary) search for cardinality k* of min vertex cover.
n Find a vertex v such that G  { v } has a vertex cover of size  k* - 1.

– any vertex in any min vertex cover will have this property
n Include v in the vertex cover.
n Recursively find a min vertex cover in G  { v }.


