MATHEMATICA MODEL

非线性交调的 频率设计

主讲: 龚劬

摘要

本案例研究的是一非线性系统,当其输入为特定离散频率时,输出信号中原频率与交调频率之间的频差关系及相应的幅值关系,并据此选择输入信号的频率,以避免交调形成噪声干扰。

采用线性回归的方法获得系统的特性函数为: $y(t)=0.255091u(t)+0.0453838u^2(t)-0.000413u^3(t), 并通过显著性检验,且R²大于0.999,说明该模型是合理的。$

在进行频率设计时考虑解为整数的特点,在穷举搜索法的基础上建立简单模型;通过简化判决条件,缩小检验范围,提高搜索速度,建立改进的搜索模型;进一步还给出了具有一般性的傅氏求解方法,最终得到两组解为f1=36,f2=49,f3=55

-2-

摘要

若考虑提高信噪比,则最优解为第一组解。

综上所述,本模型设计中充分考虑题设要求,在合理假设下简化模型,设计的模型具有简单、实用、易推广、适应范围广的特点。

一、问题背景

在通信工程中,信号的可靠性是至关重要的,在信号的传输过程中,往往遇到噪声干扰,干扰可能来自系统的外部,也可能由系统本身的非线性输出过程产生。

例如:一非线性系统 $y(t) = u(t) + u^2(t)$

输入 $u(t) = \cos 2\pi f_1 t + \cos 2\pi f_2 t$

输出信号 y(t) 中还包含有新频率 $f_i \pm f_j(i,j=1,2)$ 称为交调,如果交调出现在原有频率的附近,就会形成噪声干扰。因此,在工程设计中,需要对输入信号的频率进行适当的选择,以避免交调形成噪声干扰。

二、问题

已知一SCS(非线性)系统,输入输出的对应关系由一组实验数据给定。

输入	0	5	10	20	30	40	50	60	80
输出	0	2.25	6.80	20.15	35.70	56.40	75.10	87.85	98.50

输入
$$u(t) = A_1 \cos 2\pi f_1 t + A_2 \cos 2\pi f_2 t + A_3 \cos 2\pi f_3 t$$

其中 A_1 =25, A_2 =10, A_3 =45,是输入信号的振幅,要求设计输入频率 f_1, f_2, f_3 并使其满足下列条件:

满足的条件

- 1. $f_1 \in [36,40], f_2 \in [41,50], f_3 \in [46,55].$
- 2. 在区间范围内 f_1, f_2, f_3 只选择整数值。
- 3. 通过SCS后的交调只考虑二阶类型 $f_i \pm f_j (i, j = 1,2,3)$ 和三阶类型 $f_i \pm f_j \pm f_k (i, j, k = 1,2,3)$
- **4**. $f_i \notin [f_j 5, f_j + 5](i, j = 1, 2, 3, i \neq j)$
- 5. 交调 $f_n = f_i \pm 6$ 时,信噪比SNR= $10 \lg \frac{B_i^2}{C^2} > 10 dB$ 。其中 B_i 是 f_i (输入频率)的振幅, C_n 是 f_n (交调)的振幅。

四、问题的分析

需建立两个模型

- 第一个模型是系统的输入输出函数模型。
 利用题目中给出的实验数据,在合理假设的情况下,通过拟合或回归的方法求解输入输出关系中的参数。
- 第二个模型是频率设计模型。

由于求解范围在整数的范围,而且可得的组合在数量上不是十分大,所以可考虑采用搜索法进行求解。

五、假设

- 1.该系统为一因果、时不变、无记忆的非线性系统。由 因果时不变系统的特性可知:
 - (1) 系统具有零输入时零输出的特点;
 - (2) 系统参数不随时间零输出的特点;
- 2. 假设该系统的参数不随输入信号的频率变化而变化,
- 3. 系统的特性函数由实验进行测量给出。实验中输入信号是一确定量。输出观测量中不含系统误差,只有观测误差,其对应输入量的关系为 $y = f(u) +, \epsilon$ 其中 ϵ 为随机扰动,假设该扰动是符合 $\mu = 0$ 的正态分布。

六、符号说明

```
频率为 f 分量的幅值
A(f)
        接收带(单边)
В
        输入频率的振幅
B_{i}
        交调 f_n 的振幅
       交调频率
        输入频率
        信噪比 (10 \lg \frac{B_i^2}{C^2})
SNR
        输入信号
u(t)
        输出信号
y(t)
```

定义系统特性函数为:y(t)=f[u(t)]。

若只考虑 t_0 时刻,由假设知, $y(t_0)=f[u(t_0)]$ 可简写为:y=f(u),其中u为输入信号,而y为输出信号。

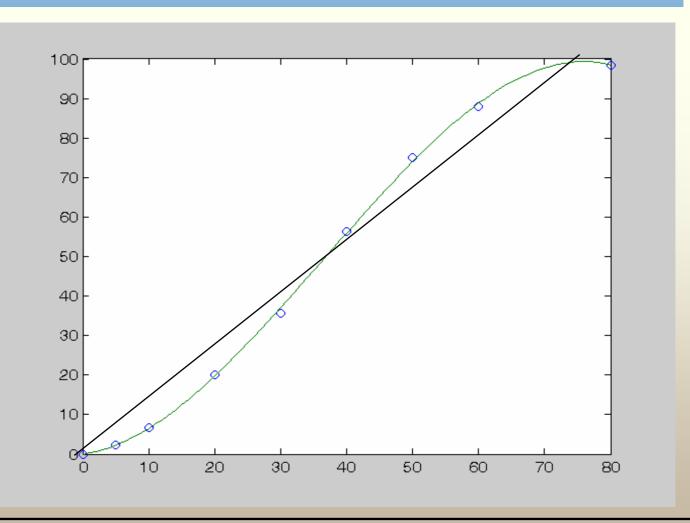
由假设3知, $y=f(u)+\varepsilon$, 因为 ε 符合 $\mu=0$ 的正态分布, 所以可以根据实验数据用回归模型进行求解。

基于三点原因:

- (1)假设1中为零输入时零输出;
- (2) 只考虑二阶及三阶交调的影响;
- (3)多项式有利于频率及幅度的求解。

结合样本的散点图的形状,确定回归的模型为

$$y = a_1 u + a_2 u^2 + a_3 u^3$$



确定系数 a_1, a_2, a_3 的方法

1) 求解优化问题:

$$\min Q(a_1, a_2, a_3) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [y_i - (a_1 u_i + a_2 u_i^2 + a_3 u_i^3)]^2$$

这是一个二次规划问题,可调用MATLAB软件中的函数 quadprog求解。

或求解优化问题

$$\min Q(a_1, a_2, a_3) = \max_{i} |\varepsilon_i| = \max_{i} |y_i - (a_1 u_i + a_2 u_i^2 + a_3 u_i^3)|$$

这是一个最大最小化问题,可调用MATLAB软件中的函数fminimax求解。

确定系数 a_1, a_2, a_3 的方法

2)线性最小二乘拟合

$$\Rightarrow x_1=u, x_2=u^2, x_3=u^3$$

用三元函数 $y=a_1x_1+a_2x_2+a_3x_3$ 来拟合已给数据 (u_i,u_i^2,u_i^3,y_i) ,可调用MATLAB软件中的函数 Isqcurvefit求解。

3) 多元线性回归

回归模型为
$$\begin{cases} \mathbf{Y} = a_1 x_1 + a_2 x_2 + a_3 x_3 + \varepsilon \\ \varepsilon \sim N(0, \sigma^2) \end{cases}$$

可调用MATLAB软件中的regress,得到系数的预测值。

用多元线性回归得到系数a₁,a₂,a₃的估计值

使用MATLAB软件中的多元线性回归,我们可以得到系数的预测值

为, $\hat{a}_1 = 0.244091$, $\hat{a}_2 = 0.045383$, $\hat{a}_3 = -0.000413$,相关系数 R 的平方值大于0.999,且所有检验都通过,效果很好。

若单纯从数据上回归的需要出发,我们共设计了7种类型的多项式,通过MATLAB中的regress和stepwise求解后得到各自优缺点,并列于下页的表中。

	模型	优点	缺点
1	y=a+bu	线性化,检验通过 R=0.97	不能反映系统非线性,无交调分量产生
2	y=a+bu+cu ²	系数显著性检验通过, 二次项检验稍差	不能产生三阶交调
3	y=a+bu+cu ²⁺ du ³	可以产生三次交调	常数项显著性检验 不通过
4	y=au+bu ²⁺ cu ³	可产生三次交调,显著 性检验都通过 R ² =0.999	最多只能产生三次 交调
5	y=a+bu+cu ² +d u ³ +eu ⁴		四次项系数检验不通过,没有意义
6	$y=a+bu+cu^2+d$ $u^3+eu^4+fu^5$	R ² 进一步提高,五次项 系数显著性检验通过	常数项及二次项不 能通过显著性检验
7	y=au+bu ³⁺ cu ⁴ +du ⁵	R ² 再一步提高,显著性 检验很好	产生交调增多,下一步分析变复杂

进一步,对u,u²,u³进行逐步回归,参量进入顺序为u,u³,u²,说明奇数项的作用较大。而且在所作的7种模型中,最优的模型4与模型7均不含有常数项,说明假设1是合理的。

将输入

$$u(t) = A_1 \cos 2\pi f_1 t + A_2 \cos 2\pi f_2 t + A_3 \cos 2\pi f_3 t$$

代入系统的输入输出特性函数

$$y(t) = 0.2441 u(t) + 0.04538 u^{2}(t) - 0.004133 u^{3}(t)$$

中,利用积化和差公式 $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$ 经整理得到y(t)的频率成分有以下几种:

- (1) 1阶: f_i, i=1,2,3;
- (2) $2 \hat{M} : |f_i \pm f_i|, i, j=1,2,3;$
- (3) $3 \text{ in } : |f_i \pm f_j \pm f_k|, i, j, k=1,2,3;$

将输入

$$u(t) = A_1 \cos 2\pi f_1 t + A_2 \cos 2\pi f_2 t + A_3 \cos 2\pi f_3 t$$

代入系统的输入输出特性函数

$$y(t) = 0.2441 u(t) + 0.04538 u^{2}(t) - 0.004133 u^{3}(t)$$

中,利用积化和差公式 $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$ 经整理得到y(t)的频率成分有以下几种:

- (1) 1阶: f_i, i=1,2,3;
- (2) $2 \hat{M} : |f_i \pm f_i|, i, j=1,2,3;$
- (3) $3 \text{ in } : |f_i \pm f_j \pm f_k|, i, j, k=1,2,3;$

(1) 频率条件

对接收带宽度为2B的情况,当一频率组 $f_1, f_2,$ 满足下列条件时称为满足频率条件(除去 $f_i + f_j - f_i$ 况)。

$$a.f_i \notin [f_j - B, f_j + B]$$
 $(i, j = 1,2,3)$
 $b \cdot f_i \pm f_j \notin [f_l - B, f_l + B]$ $(i, j, l = 1,2,3)$
 $c.f_i \pm f_j \pm f_k \notin [f_l - B, f_l + B]$ $(i, j, k, l = 1,2,3)$

(2) 幅度条件

C_n为交调产生的振幅,B_i为输出中主频的振幅。若

$$f_n = f_i \pm 6 (i = 1,2,3)$$
,则对应SNR= $10 \lg \frac{B_i^2}{C_n^2} > 10 dB$ 。

(3)第一类解

满足B=6的频率条件时的频率组,即为第一类解。显然,第一类解使所有差频与和频都落在 $f_i \pm 6(i = 1,2,3)$ 外,因而自然满足幅度条件。

(4)第二类解

满足B=5的频率条件的频率组即为第二类解。

模型I:简单模型

频率 f_1, f_2, f_3 为整数 ,且 $f_1 \in [36,40], f_2 \in [41,50], f_3 \in [46,55]$.因而解的可能组合有限,用穷举法搜索可能的组合。

搜索过程:当给定一组频率组,通过回归模型,将所产生的新的和频与差频进行记录,然后检验频率条件与幅度条件,符合则输出所得解,并更换另一组频率组重复上述步骤,直至所有可能情况都列举完。

考虑到频率条件比幅度条件简单,可将上述搜索过程分两步。第一步先搜索满足频率条件的频率组。第二步则在第一步中求得的解中检验幅度条件,搜索出第二类解。

模型I:简单模型

第一步中,没有第一类解,第二类解的可能组合有6个:

```
(36, 42, 54) (36, 42, 55) (36, 48, 54)
```

第二步中,检验幅度条件后得到两个满足条件的第二类 解:

比较得到的两组解在 $f_i \pm 6$ 的SNR值,可确定解1优于解2,即最优解为(36,42,55),次优解为(36,49,55)

模型II: 改进模型

考虑交调减去主频后的频差的特点,可将频率条件简化。

定理:设离主频最近的交调与相应主频之间的频差的绝对值为d,则当 $f_i + f_j > f_k(i,j,k=1,2,3)$ 时,

$$d = \min(f_3 - f_2, f_2 - f_1, 2f_1 - f_3, |f_3 + f_1 - 2f_2|) \quad (f_1 < f_2 < f_3)$$

因此,频率条件可简化为:对接收带2B而言,要求d>B。 所以我们可将搜索条件改为d>B,写成不等式组的形式

$$\begin{cases} f_3 - f_2 > B \\ f_2 - f_1 > B \\ 2f_1 - f_3 > B \\ |f_3 + f_1 - 2f_2| > B \end{cases}$$

对应所给数据B=6及 f_1 , f_3 的区间范围可知 , $2f_1 - f_3 > B$ 必然成立。B=5时同样成立。

采用改进模型的一大优点是将问题设置为一规划问题:目标函数为使交调的SNR最小,约束方程一线性不等

式组给出:

$$\begin{cases} f_1 \in [36,40] \\ f_2 \in [41,50] \\ f_3 \in [46,55] \\ f_2 - f_1 > B \\ f_3 - f_2 > B \\ |f_3 + f_1 - 2f_2| > B \end{cases}$$

这一规划问题的整数解即为本问题的最优解。

模型III: 傅氏级数展开法 〉

在前面的模型中,仅局限于系统特性函数为三次多项式,这种简单的函数可通过各分量相乘来获得幅值,已相当麻烦且规律比较复杂。若系统的特性函数的多项式阶次提高或为非多项式形式,上述方法中的幅度条件很难判定。而采用傅氏级数法则可适应不同的函数类型。

当输入为离散整数频率时,y(t)的基频是整数,y(t)周期为1。所以,任意频率分量幅值 $A(f') = \sqrt{a^2 + b^2}$

在本题中,y(t)为偶函数,故有 $A(f') = a = 4\int_0^{\frac{1}{2}} y(t)\cos 2\pi f't dt$

模型III: 傅氏级数展开法

用数值积分求出 A(f') 这种方法运算量大,但可适应各种输入函数。

在本题中,应先按模型II(改进模型)的搜索方法找到可能解,再计算这些解中需检验幅值的频率 的 $A(f'_i)$ 就可以进行检验,求出满足幅值条件的解。

使用MATLAB软件对两组频率值(36,42,54)、(36,42,55)进行本节中的分析,得到的结果与前面模型得到的结果相同。

九、稳定性分析

1.解关于系统特性函数多项式系数的稳定性

这里讨论当系统多项式的系数在什么范围变化时,解仍是解,非解仍是非解。

当系统特性函数多项式系数发生变化时,输出的频率不变,但各频率的振幅将发生变化。故只需讨论系统特性函数多项式系数变化时对有关信噪比的影响,即当多项式系数在什么范围变化时,前面得到的6组频率中,2、4组仍是解,3~6组仍是非解。

九、稳定性分析

1.解关于系统特性函数多项式系数的稳定性

这里讨论当系统多项式的系数在什么范围变化时,解仍是解,非解仍是非解。

当系统特性函数多项式系数发生变化时,输出的频率不变,但各频率的振幅将发生变化。故只需讨论系统特性函数多项式系数变化时对有关信噪比的影响,即当多项式系数在什么范围变化时,前面得到的6组频率中,2、4组仍是解,3~6组仍是非解。

九、稳定性分析

2. 高阶系统多项式(≥4阶)对解的影响

前面系统多项式,采用的是三阶多项式,实际上大于等于4次的函数亦能产生一阶、二阶、三阶的交调。但由于4次及4次以上的项其系数非常小(≤10⁻⁵)。故其产生的交调的振幅相对3次项产生的该交调的振幅的变化在解的稳定范围内,故用3次多项式是足够精确的。

1.模型的优缺点

类别	优点	缺点
模型	原理简单明了	相对而言运算次数多
模型	求解速度快,程序简练,推广容易	只能搜索第一类解及 第二类可能解
模型ⅡⅡ	适用于任意系统 的特性函数	速度慢,运算量大,

2. 改进与推广》

(1) 频率选择区间加大对第一类解的影响

当选择区间达到一定范围,特别是两端频率f1,f3 之间的距离扩大时,第一类解必然可以找到,说明增 大高、低频分量的频差有助于减小交调的影响。当将 f3选择频率设为[46,57]时,可得两个第一类解:

(36,43,57)和(36,50,57)

2. 改进与推广

(2)接收带大小对解的影响

从程序运行结果可知,对于同一频率分辩力,当接收带缩小时,可能解的个数将大幅度增加。如为整数解时,当接收带从5降至4时,可能解的个数由6变为44。对于频率分辨力为0.5与0.1也有相同情况。如对于频率分辨力为0.1,当接收带从5降为4时,可能解的个数从322一下子变为12782个。

2. 改进与推广

(3)将输入信号由3项改为n项

$$u(t) = \sum_{k=1}^{n} A_k \cos 2\pi f_k t$$

研究其信噪比的计算和研究高阶交调(如5,7 阶)的分析。Fourier分析是研究此问题的重要工 具。

The End