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Abstract

In most human cancers, the telomere erosion problem has been bypassed through the activation of a telomere maintenance syste
activation of telomerase). Therefore, telomere and telomerase are attractive targets for anti-cancer therapeutic interventions. Here,
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a large panel of strategies that have been explored to date, from small inhibitors of the catalytic sub-unit of telomerase to anti-telomerase
immunotherapy and gene therapy. The many positive results that are reported from anti-telomere/telomerase assays suggest a prudent optimism
for a possible clinical application in a close future. However, we discuss some of the main limits for these approaches of antitumour drug
development and why significant work remains before a clinically useful drug can be proposed to patients.
© 2005 Elsevier Ireland Ltd. All rights reserved.

Keywords: Targeted anticancer therapy; Telomeres; Telomerase

1. Introduction

The current trend in research on anticancer drugs is to
exploit particular traits or hallmarks unique to cancer cells.
Despite the fact that cancer displays a great heterogeneity in
clinical behaviour, most human tumours, share a limited set
of acquired capabilities that define the malignant state[1].
These include self-sufficiency in growth signal, insensitivity
to antigrowth signals, avoidance of programmed cell death,
unlimited replicative potential, sustained angiogenesis, tissue
invasion and metastasis. Among these hallmarks, the acqui-
sition of unlimited replicative potential is a key step to ensure
expansive tumour growth.

Activation of a telomere maintenance mechanism seems
indispensable for immortalisation of human cells. Telom-

2. Telomere biology and cancer
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that counts the number of cellular divisions and limits life
span[7]. In most malignant cells (85–90%), the maintenance
of telomeres is achieved by upregulating the expression of
the telomerase enzyme, which adds hexanucleotide repeats
onto the ends of telomeres[8] whereas, 10–15% of the
remainder tumours or tumour cell lines maintain the length
of telomeres through a telomerase-independent alternative
lengthening of telomere (ALT) mechanism[9,10], a pro-
cess implicating homologous recombination[11]. However,
the maintenance of telomere length above a critical thresh-
old through either mechanism permits unlimited replication
of cells. The ALT phenotype is characterized by heteroge-
neous telomere lengths and the presence of a variant form
of the promyelocytic leukaemia (PML) nuclear bodies at the
telomeric level, also called APBs (ALT-associated PML bod-
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ypes
have potentially a higher chromosomal instability than telom-
erase positive tumours[13–15]. However, the clinical evo-
lution and sensitivity to treatment of ALT-tumours are still
poorly described despite the reported significance of the ALT-
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.1. Unlimited replication potential: the link to
elomeres and telomerase

Normal cultured cells have a finite replicative poten
2] meaning that after a certain number of divisions they
rowing and enter senescence, a stage named morta
M1). In human fibroblasts the senescence can be byp
y inactivation of the tumour suppressor genes p53 and
hese transformed cells progress through 20–30 doub
efore they enter a second state called crisis or mor
(M2). Cells that escape crisis have acquired the ab

o divide without a limit, a trait called immortalisation[3].
ver the past decade, emerging evidence has shown th
nds of chromosomes, or telomeres, are essential regu
f life span. Human telomeres which are composed of
ral thousand repeats of a T2AG3 hexanucleotide seq
lement, progressively shorten as normal cells prolife

4,5], whereas immortalised cells, including most type
umour cells, maintain a stable telomere length[6]. Thus,
elomeres have been proposed to serve as a molecular
athway in, for instance, sarcomas[16].

.2. Telomeres, a multi-protein complex

The extremities of eukaryotic chromosomes are comp
f specialized DNA nucleoprotein complexes termed te
res (Fig. 1). Human telomeres consist of a variable num
f tandem repeats of the T2AG3 sequence together
group of specific proteins, and are therefore of vari

ength. At the 3′ end, the G rich strand of the telomere for
single stranded extension. Recent ultrastructural evid

n vitro suggests that the telomere repeated sequence
ack on itself to form a duplex loop structure termed

oop[17]. Both telomeric DNA and telomere-associated p
eins have an essential role in stabilizing chromosome
y forming a cap structure that protects chromosome

rom exonucleolytic degradation and terminal fusions. S
elomere-associated proteins bind directly to the T2A
NA repeats, whereas others are associated with the t
re via protein–protein interactions (Fig. 2). In humans, th
eres and telomerase, the protein that allows their mainte-
nance, have therefore been proposed as preferential targets
for anticancer drug development. This review highlights
recent advances in our understanding of mammalian telom-
ere biology and how it relates to cancer, and discusses current
approaches that exploit this knowledge to develop novel anti-
neoplastic drugs.

ies) [12]. Immunofluorescent techniques have demonstr
that APBs bodies, in addition to the PML protein, conta
telomeric DNA with their usual telomere-associated prote
(e.g. TRF1, TRF2), but also proteins that are implicated
double strand break repair and homologous recombina
such as RPA, Pre11/Nbs1/Rad51 and Rad52[12]. Further, it
has been proposed that tumours presenting ALT-phenot
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Fig. 1. Telomere sequence and structure in humans. The telomeres are visualized by fluorescent in situ hybridisation (upper picture) using a telomere-specific
PNA probe (in red) on metaphase chromosome spreads. The chromosomes are counter-coloured by DAPI (in blue). The telomeres consist of a variable number
of tandem repeats of the T2AG3 sequence and are therefore of variable length. At the 3′ end, the G rich strand of the telomere forms a single stranded extension.
The telomere repeated sequence folds back on itself in vitro to form a duplex loop structure termed T-loop, but structures such as G-quartets at telomere 3′ ends
are possible.

TRF1 and TRF2 proteins specifically bind double stranded
telomere sequences through a Myb-like helix/turn/helix motif
[18–20]whereas the POT1 protein associates with the 3′ sin-
gle stranded overhang through its oligonucleotide binding
(OB) fold motif [21,22].

Both TRF1 and TRF2 are involved in regulating telom-
ere length in vivo (Table 1). Overexpression of TRF1 or
TRF2 leads to a gradual shortening of telomeres in telom-
erase positive human cells[23–25]. However, overexpression
of TRF2 but not TRF1 in telomerase negative human cells
resulted in accelerated telomere shortening[26] suggesting
that these proteins act through distinct pathways. Accord-

ingly, the expression of a TRF1 or TRF2 dominant negative
mutant has shown different effects on telomeres in human
cells. When a dominant negative mutant of TRF1, which
prevents the association of endogenous TRF1 with telomeres,
was overexpressed the telomere gradually elongated suggest-
ing that the primary function of TRF1 is to negatively regulate
telomere length[25]. Furthermore, different levels of TRF1
did not affect the rate of telomere shortening in telomerase
negative cells, indicating that TRF1 alters telomere length
by affecting the telomere elongation step[26]. It has been
suggested that TRF1 controls negatively telomerase activ-
ity in cis [23]. This was demonstrated in an experiment that
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Fig. 2. Telomere-associated proteins in humans. Both telomeric DNA and telomere-associated proteins have an essential role in stabilizing chromosome ends by
forming a cap structure that protects chromosome ends from exonucleolytic degradation and terminal fusions. Some telomere-associated proteins bind directly
to the T2AG3 DNA repeats, whereas others are associated with the telomere via protein–protein interactions. In humans, the TRF1 and TRF2 proteins bind
double stranded telomere sequences through a Myb-like helix/turn/helix motif whereas the POT1 protein associates with the 3′ single stranded overhang. TRF1,
TRF2 and POT1 interact together and associate directly or indirectly with other proteins. TRF1 interacts with the poly(ADP-ribose) polymerase Tankyrase 1
and 2. TRF1 also directly binds TIN2, and interacts with POT1 through a TIN2/PTOP interaction. Another direct TRF1 interacting factor is PINX1, a protein
that binds to hTERT. TRF1 has also been shown to bind a number of proteins involved in DNA repair or checkpoint including, Ku, BLM helicase, and ATM
kinase. The TRF2 protein makes a complex with the hRap1 protein. The TRF2–hRap1 complex interacts with the Mre11/Rad50/Nbs1 DNA repair complex, the
nucleotide base excision repair endonuclease ERCC1/XPF, the WRN and BLM helicases, Ku heterodimer, and the ATM kinase. Telomerase is composed of the
catalytic subunit hTERT and an RNA component (hTR). The subunits associates to form a complex tetramer composed of two RNA subunits and two catalytic
subunits. In addition to these core components other proteins that are dispensable for catalytic activity associate with telomerase, including TP1, hsp23, hsp90,
hStau, L22 and dyskerin. Finally, the hEst1p protein presumably recruits and activates telomerase at the 3′ end of telomeres.

tethered a LacI-TRF1 fusion plasmid to subtelomeric LacO
repeats and that limited the telomere elongation. In addition,
it was shown by ChIP experiments on several cell lines that
the amount of TRF1 at telomere is proportional to the T2AG3
length[27]. Based on these data and in accordance with the
‘counting mechanism’ proposed for the regulation of telom-

ere length in yeast[28] the proposed model is that the amount
of TRF1 controls in cis the action of telomerase at each telom-
ere[25].

Whereas TRF1 seems directly involved in telomerase reg-
ulation, TRF2 is thought to mostly protect chromosome ends.
Firstly, TRF2 was proposed to promote the formation of

Table 1
Telomerase-/telomere-associated proteins and their interactions

Factors Name in human Functions at telomere Interactions with

Telomere specific proteins
Telomerase catalytic core hTR RNA subunit

hTERT Reverse transcriptase subunit

Telomerase accessory factors EST1A, EST1B Telomerase

G-tail binding factors POT1 Binds T2AG3 using OB-fold TRF1, TRF2, PTOP, TIN2, Tankyrase 1

Duplex T2AG3 binding factors TRF1 Binds telomeres, negative length regulator POT1, TRF2, TIN2, PINX1, TANK1/2,
Ku, BLM, ATM

TRF2 Binds telomeres, negative length regulator, role
in T-loop, chromosome stability

POT1, TRF1, hRAP1, PARP2, TIN2,
MRN, ERCC1/XPF, WRN, BLM, Ku,
ATM

Proteins indirectly binding telomere hRAP1 Length regulator TRF2, MRN
TANK1/2 PARP activity, TRF1 ribosylation, positive length

regulator
TRF1

TIN2 Positive length regulator TRF1, TRF2
PINX1 Telomerase inhibitor TRF1, TIN2

Factors Name in human Functions Interactions with

O
calisat F1, TRF2
alisatio
HEJ

HEJ
thers
DNA repair proteins Ku70/Ku86 NHEJ, telomere lo

DNAPKcs NHEJ, telomere loc
Mre11/Rad50/Nbs1 Recombination, N
ERCC1/XPF NER

Helicases WRN and BLM Recombination, N
Checkpoint proteins ATM DNA damage signaling
ion, negative length regulator, telomere capping Telomerase, TR
n, telomere capping

TRF2
TRF2

TRF1, TRF2
TRF1, TRF2
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T-loops[17,29]. Secondly, inhibition of TRF2 by the expres-
sion of a dominant negative allele or by RNAi resulted in
loss of the 3′ overhang without detectable loss of double
stranded telomeric sequences, and end to end fusions gen-
erated by DNA ligase IV-dependent non homologous end
joining [30–32]. These deprotected telomeres are in turn rec-
ognized like double strand breaks and induce a p53 and ATM
apoptotic pathway[33].

The role of POT1 in regulating telomere length is less
clear. Recently the resolution of the crystal structure of the N-
terminal half of POT1 bound to a telomeric ssDNA decamer
showed that the telomeric 3′-terminal guanine base is buried
in the protein[34], sustaining that POT1 makes the telomere
3′ extremity inaccessible to telomerase and thus probably
inhibits telomere elongation as previously predicted[27].

TRF1, TRF2 and POT1 interact together and associate
directly or indirectly with other proteins that can also affect
the length of telomeres. TRF1 recruits a number of proteins
to the telomere (reviewed in[35]). TRF1 interacts and is
modified by the poly(ADP-ribose) polymerase Tankyrase 1
and 2[36–41]. The ADP-ribosylation of TRF1 by tankyrases
diminishes its ability to bind telomeric DNA[41]. TRF1 also
directly binds TIN2 (TRF1 interacting protein 2), an associa-
tion that appears to protect TRF1 from tankyrase in vivo and
has been proposed to regulate the access of telomerase to the
telomeres[42,43]. The TRF1 complex interacts with POT1
t IP1
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t g
f erase
b tive
c n
s r or
c oin-
i
k

RF2
p
T bs1
D air
e -
c e
[ res
i

cted
t that
s od-
u

2

spe-
c -
v y of
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sise the last stretch of DNA on the lagging strand[61] – a
phenomenon known as the ‘end replication problem’. In the
absence of telomerase the extreme end of the chromosome is
not replicated and the telomeres progressively shorten with
every cell division[5]. Telomerase is a unique reverse tran-
scriptase[62,63]composed of both protein subunits (among
which the catalytic subunit hTERT in humans[64,65]), and
an RNA component (hTR in humans)[66] that serves as
the template for the addition of the repeated sequence to
3′ chromosome ends[63,67]. hTR is a member of small
nucleolar RNA molecules termed box H/ACA RNAs[68].
The role of the major protein subunit, hTERT, is to catalyse
the polymerisation of nucleotides. The subunits associates
to form a complex tetramer composed of two RNA subunits
and two catalytic subunits[69–71]and are sufficient for cat-
alytic activity both in vitro and in vivo[72,73]. In addition
to these core components other proteins that are dispens-
able for catalytic activity associate with telomerase, including
TP1, hsp23 and hsp90[74–77], hStau, L22[78] and dyskerin
[79]. However, the role of these telomerase associated fac-
tors remains to be investigated. More recently, homologs of
the yeast Est1p protein, that recruits and activates telomerase
at the 3′ end of telomeres, have been identified in human.
EST1A and EST1B associate with telomeres and bind telom-
erase in vitro and overproduction of EST1A affects telomere
length and capping[80,81].
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l ady
r tion
hrough a TIN2/PTOP interaction (PTOP is also called P
r TINT1) [44,45]. A third direct TRF1 interacting factor
INX1, a protein that binds to hTERT and directly inhib

elomerase activity in vitro[46]. Recently, results comin
rom yeast studies suggested that PinX1 regulates telom
y sequestering its protein catalytic subunit in an inac
omplex lacking telomerase RNA[47]. TRF1 has also bee
hown to bind a number of proteins involved in DNA repai
heckpoint control including, the non-homologous end j
ng protein Ku[48], the BLM helicase[49,50], and the ATM
inase[51,52].

TRF2 has also a number of interacting factors. The T
rotein makes a complex with the hRap1 protein[53]. The
RF2–hRap1 complex interacts with the Mre11/Rad50/N
NA repair complex[54], the nucleotide base excision rep
ndonuclease ERCC1/XPF[55], the WRN and BLM heli
ases[50,56,57], Ku heterodimer[58], and the ATM kinas
51]. Moreover, like TRF1, the activity of TRF2 at telome
s modulated through an interaction with PARP2[59].

Finally, the TRF1 and TRF2 complexes seems conne
hrough a simultaneous binding of TIN2, a connection
tabilizes their levels and localization at telomeres and m
lates their capping function[43,60].

.3. Telomerase

The terminal replication of chromosomes requires a
ialised polymerase, termed telomerase (Fig. 3) since con
entional DNA polymerases, responsible for the majorit
NA replication in eukaryotic cells, are unable to synt
Human telomerase is regulated during developmen
ifferentiation, mostly through transcriptional control
TERT. It has been shown that hTERT undergoes a
ative splicing[82], and that one deletion splice varia
TERTalpha, is a dominant negative inhibitor of telome
ctivity [83]. Although hTR is ubiquitously expressed
ammalian cells[66], the expression of hTERT is restrict

o cells that exhibit telomerase activity indicating that hTE
s the rate-limiting component of the telomerase enz
64]. Altogether, these findings suggest that the exp
ion of hTERT is a critical step during malignant tra
ormation. Indeed, three tumour suppressor pathways
een identified as negative regulators of hTERT trans

ion: Mad1 a repressor of c-Myc; TGFB, acting throu
IP1; Menin, binding directly to the hTERT promoter[84].
ther negative regulators have been described: pRB,
osome 3 transfer, and Wilm’s tumour 1 suppressor g
he expression of hTERT is also positively regulated not
y MYC, BCL2, E6 human papillomavirus type 16 p

ein, phosphorylation by PKCa or AKT/PKB (reviewed
85]).

.4. Telomerase and cancer

The demonstration that telomerase is actually one o
ey enzymes for human cells to acquire immortality has c
y complementary approaches. First, the ectopic expre
f telomerase in telomerase-null, mortal human cells s

izes telomeres and facilitates immortalisation, a trait alre
ecognized as a crucial step during cell transforma
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Fig. 3. Human telomerase in action. The terminal replication of chromosomes requires telomerase since conventional DNA polymerases are unable to synthesise
the last stretch of DNA on the lagging strand. Telomerase is a reverse transcriptase composed of a catalytic subunit called hTERT and an RNA component
(hTR) that serves as the template for addition of nucleotides to the repeated sequence. The role of the protein subunit hTERT is to catalyse the polymerisation
of nucleotides (elongation step). Then the telomerase slips one repeat unit towards the 3′ end (translocation step) to start a new elongation step, and so on.

[86–90]. Secondly, the conversion of human fibroblasts or
epithelial cells to transformed cancer cells is facilitated by
hTERT expression in conjonction with oncogenes (SV40
small T and large T and RAS[91]. Lastly, the inhibition
of telomerase in immortal human cancer cell lines leads
to apoptosis or senescence[92–95]. Additional clues that
telomere-associated events are indeed relevant to carcinogen-
esis come from the analyses of mice deficient for telomerase
showing that in certain genetic contexts, impaired telomere
functions can facilitate cancer. For example, the tumour inci-
dence of p16INK4a null mice was reduced in the absence of
telomerase[96]. Further, in p53 and telomerase double defi-
cient mice the tumour onset is markedly accelerated[97,98],
and the constitutive expression of mTert in Lck-TERT mice
leads to increased promotion of lymphoma independently of
telomere length maintenance[99]. Higher incidence of both
induced and spontaneous epidermal tumors has also been
observed in transgenic mice overexpressing mTERT in basal
keratinocytes[100].

Therefore, the evidence that most cancer cells activate
telomerase whereas normal cells are usually devoid of telom-
erase activity (with the exception of ongoing proliferating
cells such as lymphocytes, basal keratinocytes, intestinal
crypt cells, CD34 expressing peripheral blood stem cells,
and germline cells) has naturally lead to extensive investi-
gations to detect this protein and its activity for a potential
use in cancer diagnosis and prognosis, and to eventually mon-
itor the tumour response to therapy. Finally, these data have
greatly inspired the development of various strategies to tar-
get telomere and telomerase for cancer therapy.

3. Anti-telomere and anti-telomerase drugs

3.1. Targeting hTERT

Targeting the hTERT catalytic sub-unit as anticancer ther-
apy is theoretically tumour-specific and might be moderately
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toxic due to its expression spectrum in tumour and highly
proliferating cells compared to other normal cells. Various
nucleoside triphosphates or non-nucleoside reverse transcrip-
tase inhibitors are under investigation, and together with some
recently developed antisense strategies these represent inter-
esting anti-hTERT candidates for clinical drug development
(Table 2).

3.1.1. Nucleoside inhibitors
Nucleoside analogs such as AZT (3′azido-3′deoxy-

thymidine) are small molecules with reverse transcriptase
inhibitory effect, and were tested against telomerase as early
as a decade ago. These analogs block the incorporation of
dNTPs into the neosynthesized DNA during the reverse tran-
scription activity. In early studies, AZT was able to partially
reduce the telomerase activity, but the cells showed only some
weak proliferative impairment. Nevertheless, a transient
reduction of telomere length was observed[101,102]. Other
nucleoside analogs such as derivates of AZGTP (7-deaza-
2′-deoxygunosine 5′-triphosphate) might show a stronger
inhibitory potential[103]. Nevertheless, reported results are
inconsistent and there might be some indirect effects on
apoptosis such as incorporation of the nucleoside analogs
into mitochondrial DNA causing the depletion of mtDNA
and mitochondrial toxicity. Therefore, more arguments are
needed before nucleoside inhibitors might have applications
i
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lation of p53[108]. Interestingly, no such effect was observed
in CD34+ stem cells, and normal fibroblasts with overlong
telomeres were primarily resistant to the treatment. Such
selective and rapid telomeric cytotoxicity might be a very
useful approach in anti-cancer drug development and further
in vivo studies are greatly awaited.

3.1.3. Antisense technology
The use of standard oligodesoxynucleotides have shown

somehow disappointing results with limited stability and
bioavailability, but a recent study developed a new powerful
hTERT antisense oligodeoxynucleotides able to specifically
inhibit telomerase activity and cell growth in bladder cells
[109]. Synergism between this strategy and conventional
chemotherapy (mitomycin C, cisplatin and gemcitabine) has
also been shown with a specific 1.3- to 3.0-fold increase of
the apoptosis rate in transitional cell carcinoma cells from
bladder after combined treatment[110]. However, develop-
ing peptide nucleic acids, PNAs (analogs of DNA and RNA)
that are resistant to the degradation of exo and endonucleases
might be even more promising. PNAs are able to act through
a specific inhibition of telomerase and they also fit the cri-
teria of telomerase inhibition selectivity. Unfortunately, the
low membrane permeability of PNAs is a major obstacle to
obtain optimal cell delivery. However, hTERT-PNAs have
been tested on prostate tumour cell lines by a photochemical
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.1.2. Non-nucleosidic inhibitors
Non-nucleoside inhibitors are compounds that inhibit

elomerase through binding to the active site of the rev
ranscriptase enzyme. These small molecules have s
otential to inhibit the telomerase activity and cause
ressive telomere shortening in pharmacological scree
rograms, as for instance the isothiazolone derivative T

104], the rhodacyanine FJ5002[105], and the BIBR 153
92].

One of the most promising molecules is probably
IBR 1532, which is a non-nucleoside inhibitor that does
ffect other DNA and RNA polymerases than the telome
IBR 1532 is a very specific drug and a non-compet

nhibitor of the telomerase enzyme, suggesting that the
ng site is different from the DNA primer and nucleot
inding sites. Further studies have revealed that BIBR

nterferes with the processivity of the telomerase[106]. Its
se in different cancer cell lines from four different tum
ntities led to progressive telomere shortening followe
enescence-like growth arrest, and further induced a si
ant decrease of the tumourigenic potential in vivo[92]. The
bility of BIBR 1532 to inhibit telomerase has recently b
onfirmed by others and further completed by the dis
ry of other equally potent analogues[107]. Nevertheless

he mechanism of BIBR 1532 remains unclear. New fi
ngs suggest that high doses of BIBR 1532 lead to a sele
ytotoxicity in leukaemia cells with telomerase-independ
elomere erosion and loss of TRF2 and increased phosp
nternalization method[111]. This internalization technolog
as more efficient than an HIV-Tat protein-based appro
fter light-exposure, the cells showed marked inhibition

elomerase activity and reduced cell survival compare
ells treated with hTERT-PNA alone. The therapeutic po
ial of PNA antisense strategies is very promising, but stu
roving the efficiency of antisense-mediated hTERT mR

nhibition with eventual tumour regression should first
learly demonstrated in animal models.

There are still few studies that have taken advantage
he recently developed RNAi technology to target telome
ctivity using stable short-interfering RNA (siRNA). Kos
lek et al. showed that telomerase activity could be inhib
y siRNAs targeting telomerase components. In their s
transient and modest inhibition was shown in a varie

arcinoma cell lines (colon, brain, lung, and skin). Inhibit
as also shown in cell lines of mesodermal origin (osteo
oma and fibrosarcoma), although inhibition appeared
f shorter duration than in the carcinoma cell lines te

112]. Other investigators have also explored such strat
o target telomerase. In a recent report in Chinese, Lu X
l. seemingly obtained the inhibition of telomerase act

n a hepatocellular carcinoma cell line by siRNA, resul
n a remarkable loss of hTERT protein, a 76% loss of tel
rase activity, and an apoptotic rate significantly higher

n control cells[113]. Interestingly, another Chinese stu
laims a reduction of tumour size by RNAi technology a
ransplantation of a hepatocellular carcinoma cell line in n
ice [114]. Confirmation of these results is needed, b

eems clear that RNAi technology has a high potenti
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Table 2
Overview of anti-telomerase and anti-telomere strategies and tumour models tested

Target Class Name Mechanism Pharm. level Tumour model/organ site tested References

hTERT protein sub-unit Enzyme inhibitors/small
molecules

AZT Blocks dNTP
incorporation into DNA

in vitro Breast, leukaemia, and cervical
cancer cell lines

[101–103]

TMP, FJ5002, BIBR1532 Specific inhibition of the
active site

in vitro Breast, lung, prostate, leukaemia,
fibrosarcoma, hepatoma, and cervical
cancer cell lines

[92,104–108]

in vivo Fibrosarcoma xenografts
Antibiotics Distamycin derivatives

(MEN10716)
Catalytic inhibition of
hTERT

in vitro Melanoma and lung cancer cell lines [124]

Vitamins 1,25-Dihydroxy Vitamin
D3

Catalytic inhibition of
hTERT

in vitro Ovarian cancer cell lines [123]

hTERT mRNA Antisens molecules DNA, PNA, siRNA,
Ribozymes

Plasmid- or not
plasmid-based expression
of complementary
antisens RNA
blocking/degrading
hTERT mRNA

in vitro Breast, lung, prostate, colon, bladder,
melanoma, brain, ovarian,
endometrial carcinoma,
osteosarcoma, fibrosarcoma, and
hepatocellular carcinoma cancer cell
lines

[109–117]

in vivo Hepatocellular carcinoma xenografts

hTR (RNA component of
telomerase)

Antisens molecules DNA (DNS, GRN163),
PNA, siRNA, Ribozymes

Plasmid- or not
plasmid-based expression
of complementary
antisens RNA
blocking/degrading
hTERT mRNA

in vitro Breast, lung, prostate, colon, bladder,
melanoma, glioma, gastric,
myeloma, lymphoma, epidermoid
carcinoma, cervical carcinoma, and
gastric cancer cell lines

[125–142,145–149]

in vivo Prostate, glioma, bladder, melanoma,
lymphoma, and myeloma xenografts

Mutated polypeptides,
deletion-spliced mRNA
isoforms (plasmid based)

DN-hTERT, hTERTalpha Dominant negative action
on telomerase activity
(sequestering of hTR)

in vitro Breast, lung, colon, melanoma,
leukaemia, epidermoid carcinoma,
kidney, ovarian, melanoma, and
fibrosarcoma cell lines

[83,93,95,119–122]

in vivo Ovarian xenografts

Transcription factors of
hTERT

Small molecules, plasmid
-based expression of
peptides, hormone
receptor agonists

Porphyrins (TMPyP4),
Tyrphostins (AG825),
Nmi protein, BRCA1,
DN-ER81, tamoxifen,
ATRA agonists (Am580,
CD3640)

Inhibition of c-MYC,
ER81, estrogens,
HER/Neu, and
trans-retinoic acid
receptors, resulting in
downregulation of hTERT

in vitro Breast, prostate, leukaemia,
pancreatic, cervical carcinoma, and
endometrial cancer cell lines

[157–159,169–171]

in vivo Breast and prostate xenografts

Chromatin in the hTERT
promoter region

Demethylating agents,
histone deacetylase
inhibitors

5-Azacytidine, Tricostatin
A

Change in chromatin
structure inhibiting
hTERT transcription

in vitro Prostate, colon, neuroblastoma, and
cervical cancer cell lines

[162–164]
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Post-translational
modifications of
telomerase

Antibiotics 17-Allylamino 17-
demethoxygeldanamycin

Inhibition of hsp90
chaperone function
impairing telomerase
maturation

in vitro Melanoma [174]

Telomerase co-factors Antibiotics,
3-PI-kinase-inhibitors,
PKC-inhibitors,
diterpenoid-quinine

Novobiocin, Wortmannin,
bis-indolylmaleimide,
salvicine

Dephosphorylation of
telomerase co-factors or
hTERT itself

in vitro Breast, lung, leukaemia, melanoma,
kidney„ nasopharyngeal carcinoma
and cervical cancer cell lines

[175,177–182,210]

Telomere structure Antisens molecules siRNA Plasmid based
hTR-mediated
introduction of mutations
into the telomeric DNA

in vitro Breast, Prostate, colon, melanoma,
and bladder cancer cell lines

[143,144]

in vivo Bladder xenografts
G-quartet interactive
ligands

BRACO-19, quinoline
triazines (115405,
12459), 2-6-pyridine
dicarboxamides (831A,
832A, 307A, 360A),
Telomestatin (SOT-095),
PNA, cisplatinum

Binding to telomeric
DNA impairing its
structure

in vitro Breast, lung, colon, leukaemia,
hepatoma, melanoma, glioma,
vulval, uterin carcinoma, myeloma,
and cervical cancer cell lines

[119,141,142,190–
194,196–201,205,206]

in vivo ALT-cells
Vulval and uterin carcinoma
xenografts

Telomere structure? Anthracyclines, alkaloids
(topoisomerase-II
inhibitors)

Doxorubicin, etoposide Unknown (changing
telomere structure or
integrity)

in vitro Gastric cancer cell lines [207,208]

Telomere-associated proteins Polypeptides
(plasmid-based),
catechols,
PARP-inhibitors

DN-TRF2, MST-312,
3-aminobenzamide

Inhibition of TRF2 or
tankyrase, deprotection of
telomere structures

in vitro Breast, cervical carcinoma,
fibrosarcoma, and osteosarcoma

[33,218]

Tumour-specific antigens
such as hTERT

Adaptive T-cell
immunotherapy, cellular
immunotherapy
vaccination

hTERT-derived peptides,
transfected CTLs or
dendritic cells

Generation of cytotoxic
T-lymphocytes or specific
B-cells

in vitro Breast, prostate, melanoma,
leukaemia, renal, lymphoma, and
myeloma cancer cell lines

[221–229]

in vivo, phase I
clinical trials

Renal, prostate, and melanoma
animal models
Trials in breast, prostate and renal
cancer

Pro-apoptotic genes,
oncolytic viruses, prodrugs

Gene therapy Plasmids controlled by
hTERT promoter

hTERT positive cancer
cells activates anti-tumour
strategies

in vitro Breast, lung, colon, gastric,
pancreatic, hepatocellular carcinoma,
glioma, cervical, and fibrosarcoma
cancer cell lines

[235–256]

in vivo Gastric, ovarian, thyroid, and
fibrosarcoma animal models
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effectively target telomerase and become an interesting can-
didate for further drug development.

3.1.4. Ribozymes
Hammerhead ribozymes are antisense RNAs possessing

specific endoribonuclease activity that catalyzes the hydroly-
sis of specific phosphodiester bonds, which eventually results
in a cleavage of the targeted RNA sequences. Theoretically,
they have a large pharmacological potential such as high
stability (chemical modifications), bioavailability (uptake by
conjugated proteins or lipids), and specificity (sequence spe-
cific). Assays of degrading the mRNA of the catalytic telom-
erase subunit hTERT by ribozymes have been successful in
various tumour cell lines such as endometrial, breast and ovar-
ian carcinoma[115–117]. These studies resulted in a loss
of telomerase activity, inhibition of cell proliferation, and
apoptosis. Nevertheless, telomere shortening was not always
demonstrated and further studies using ribozyme technology
against hTERT mRNA are needed. Moreover, a supplemental
difficulty with the antisense strategy in general, might be the
presence of several versions of hTERT mRNA by alternative
splicing. Indeed, it has been shown that the hTERT transcript
has at least six alternative splice isoforms[118].

3.1.5. Dominant negative hTERT
By inducing specific alterations of amino acids, some
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a significant decrease of the stability of hTERT mRNA was
observed. However, no loss of telomere length was found, and
it remains unclear if the telomerase down regulation induced
itself cell apoptosis through modulation of telomere integrity
or if the apoptosis was induced by a telomere-independent
pathway.

Another candidate drug called MEN 10716 (a distamycin
derivative) is also a candidate as telomerase inhibitor. Effec-
tively, it has been shown in vitro that the abrogation of telom-
erase activity by MEN 10716 can affect cell proliferation even
through pathways that are not dependent on telomere erosion
[124]. However, further understanding of the specific mode
of action of these molecules and in vivo validation are needed
before any direct clinical application can be developed.

3.2. Targeting hTR

Targeting the RNA hTR is a strategy that aims at blocking
the access of telomerase to its template RNA resulting in inhi-
bition of telomerase activity. Another promising approach
is to employ mutant hTRs that introduce mutations into
the telomeres impairing indirectly the structure of telomeres
(Table 2).

3.2.1. Antisense oligonucleotides and siRNA
Strategies using transfection of antisense expression vec-
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utant hTERT proteins become catalytically inactive,
emain able to sequester the RNA component hTR. Two
es have shown in vitro the capacity of DN-hTERT constr
o inhibit telomerase activity in immortalized and tum
ells [93,95]. Comparing different cell lines, dependen
etween the time before crisis and initial telomere length
emonstrated. Interestingly, Hahn et al. also showed p

ial of this method in vivo by injecting ovarian cancer ce
nto immunodeficient nude mice[93]. The cells containin
he wild-type hTERT and control vectors readily produ
umours whereas the cells with the DN-hTERT failed to fo
umours. It is also interesting that DN-hTERT constructs
itise the tumour cells to other antineoplastic therapies,
s cisplatin, docetaxel, etoposide, ecteinascidin-743, t
olomide and imatinib[119–122]. However, potential prob

ems to be solved before treating patients with the dom
egative approach are how to ensure a proper cell de
target cancer cells with efficient uptake of the vector)
vercome risk factors related to gene therapy. Thus, w
ppealing, this approach is still far from entering the clin
rena.

.1.6. Other hTERT inhibitors
Other molecules (notably antibiotics) have shown

apacity to inhibit the hTERT sub-unit and have been te
or drug development. Recently, Jiang et al.[123]showed the
apacity of 1,25-dihydroxyvitamin D3 to induce apoptosis
varian cancer cells. The apoptosis was not due to tran
ional repression through the Vitamin D response elem
resent in the 5′ regulatory region of the hTERT gene, b
ors against hTR have been developed. Most studies
een able to induce a decrease in telomerase activity
emonstrate a progressive cellular senescence in the ta
ells. Nevertheless, the stability and bioavailability of s
olecules have been focused on through some very

enging research. Significant improvements of PNA up
ave been observed by generating PNA–DNA compl
r by conjugation with transport peptides[125,126]. Fur-

her, strategies using cationic peptides at the N-term
f PNA molecules demonstrated an enhanced inhibitio

elomerase activity in different cell lines[127], and more
ecently, PNA–DNA heteroduplexes were introduced
ipid-mediated transfection into a human gastric cell
ignificantly inhibiting telomerase activity and cell grow
128].

Moreover, studies using N3′ → P5′ thio-phosphorothioat
ligonucleotides (NPS) have shown a potential thera

ic effect in human breast carcinoma cell lines[129]. The
ong-term treatment resulted in gradual telomere sho
ng, cellular senescence, and widespread apoptosis.
equence and length optimization, the bioavailability
urther increased and led to a very potent hTR antag
alled GRN163[130]. GRN163 is able to inhibit telom
rase activity and provoke senescence and apoptosis
rogressive telomere shortening in various cell lines, inc

ng human multiple myeloma (MM) and non-Hodgkin ly
homa (NHL) cell lines[131,132]. Interestingly, GRN16
ignificantly suppressed tumour growth in several mo
enograft models such as human prostate cancer, glio
oma, MM and NHL[131–133]. These impressive resu



K.A. Olaussen et al. / Critical Reviews in Oncology/Hematology 57 (2006) 191–214 201

demonstrate clearly that GRN163 has a significant potential
for development as an anticancer agent, but it also remains a
plasmid-based approach.

Similarly, other investigators have used alternative types
of RNA oligonucleotide constructs to target the template
region of hTR, such as antisense phosphorothioate oligonu-
cleotides (S-ODNs) or as 2′-O-(2-methoxyethyl) RNAs (2′-
MOEs) [134–136]. The introduction of 2′MOEs into the
human prostate cell line DU145 led to telomerase inhibition
for 7 days and progressive telomere shortening with eventual
apoptosis of the treated cells with critically short telomeres
[136].

Another promising candidate is the 2′–5′ oligoadeny-
late antisense anti-hTR (2-5A). Repeated injections of
liposomes containing 2-5A into mice demonstrated a signif-
icant anti-tumour effect. The expression of such oligoadeny-
late oligonucleotides will normally lead to the activation of
RNAaseL, which is responsible for the degradation of single-
stranded RNA, a process taking part of a normal autonomous
antiviral system leading to apoptosis in human cells. Several
xenograft models of glioma and bladder cancer treated with
2-5A, showed tumour shrinkage specifically due to apop-
tosis induction[137–139]. Additionally, synergism between
this approach and conventional cytotoxics such as cisplatin
were also reported[140–142], which places 2-5A as a serious
candidate for further development.
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hammerhead ribozymes targeting hTR that was proved to
effectively induce apoptosis in human breast tumour cells
[148]. More interestingly, using a melanoma tumour-bearing
mouse model, a systemic distribution of EBV-based plasmids
produced sustained levels of ribozyme expression targeting
the mouse telomerase RNA (mTER)[149]. The latter study
successfully reduced both telomerase activity and metastatic
progression in vivo. Even if murine models are probably
not optimal because of their much longer telomere lengths
compared to humans, this work highlights the potential of
plasmid-based anti-hTR ribozymes as anticancer therapy. But
again, a direct clinical application might be limited by issues
around gene therapy.

3.3. Targeting regulatory mechanisms of telomerase at
the transcriptional or post-transcriptional level

Regulation of the expression of telomerase is controlled
both at the transcriptional and post-transcriptional levels.
Hence, targeting regulatory factors of telomerase has been
evaluated in several studies.

3.3.1. Transcriptional level
An important regulatory mechanism is the effect of differ-

ent transcription factors on the promoters of hTR and hTERT.
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Targeting hTR by siRNA has recently been tested
uccess, both in vitro and in vivo by Elizabeth Blackbu
eam[143]. Using human melanoma, breast, colon, pros
nd bladder cancer cell lines, they developed a hairpin s

nterfering RNA that specifically targets the endogen
ild-type hTR template region, but spares a mutant

ntroduced concomitantly into the cancer cells by a lentiv
he mutant hTR makes the telomerase add mutant DN

he telomeres, which by itself is able to cause a signifi
ell growth inhibition and apoptosis[144]. The combinatio
f both anti-wild-type hTR siRNA and mutant hTR, acts s
rgistically to kill telomerase positive cancer cells. Tum
rowth and progression were also significantly decreas

he mouse xenograft model[143]. The requirement for up
egulated hTERT, the rapidity of the killing, the failure to
ny resistant cell subpopulations, and the lack of depend
n p53, initial telomere length, or progressive telomere s
ning suggest that this strategy targeting both telomeras

he telomere structure is an attractive candidate for fu
evelopment as anticancer treatment.

.2.2. Ribozymes
As already mentioned, antisense strategy has sh

ignificant progress over the last years, and has eleg
een enriched by the ribozyme technology. Ribozymes
gainst hTR have given specific telomerase inhibition
ell growth delay in several cell line studies, but eff
ive apoptosis or reductions in telomere length have
ully been observed[145–147]. Nevertheless, a recent stu
emonstrated a clear attenuation of telomerase activi
f hTERT, like SP1[150], c-MYC [151], the estrogen rece
or [152], E2F-1[153], WT-1 [154], and MZF-2[155] and
ave been reviewed elsewhere[156]. Particularly, the tran
cription factor c-MYC, which is closely connected to
roliferation behaviour of cells, is an interesting candid

arget for the inhibition of telomerase activity. The catio
orphyrin, TMPyP4, which downregulates c-MYC and the

ore hTERT expression, has been described as an inhibi
umour growth in vivo[157]. Further, transcriptional dow
egulation of hTERT expression via a complexing of c-M
as also been evaluated, such as the c-MYC complexing
RCA1 protein and N-MYC-interacting protein (Nmi) th

nhibits c-MYC-induced hTERT promoter activity in bre
ancer[158]. Moreover, the oncoproteins HER2/Neu, RA
nd RAF, stimulate hTERT promoter activity via the E

ranscription factor ER81 and ERK mitogen-activated
ein (MAP) kinases[159]. Suppressing the phosphorylat
f ER81, or mutating its binding sites in the hTERT p
oter was able to render the hTERT promoter unrespo

o HER2/Neu. Exploiting this knowledge, it was shown t
plasmid-based introduction of a dominant-negative E

r the inhibition of the HER2/Neu receptor in breast can
ells significantly attenuates telomerase activity[159].

Demethylating agents are able to activate gene
eversing the hypermethylation of silenced gene promo
emethylation has been related to altered expression of t
uppressor genes (Herman 1994–1996). In contrast, a po
orrelation has been observed between hypermethylat
he CpG island of the hTERT promoter and mRNA exp
ion and telomerase activity in a multitude of cancer
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lines and confirmed in tissues[160,161]. Interestingly, the
inhibitory effect of the demethylating agent 5-azacytidine on
telomerase activity and hTERT expression has been shown
in several cancer cell lines, including HeLa, colorectal, neu-
roblastoma and prostate cells, with reduced cell growth in
the latter cells[162,163]. However, the correlation between
hTERT demethylation and gene repression is opposite to the
current dogma of regulation by DNA methylation. Indeed,
further analysis in prostate cells revealed that 5-azacytidine
reactivated p16 expression and repressed c-Myc expression
in one of the cell line tested. Therefore, 5-azacytidine might in
fact inhibit telomerase activity via a transcriptional repression
of hTERT, in which p16 and c-MYC could play a central role
[163]. Of course, another challenge of demethylating agents
or even of histone deacetylase inhibitors such as tricostatin
A, which has also been able to inhibit hTERT mRNA expres-
sion in prostate cells[164], is their lack of gene specificity,
and they therefore remain controversial.

Several hormones play also a role in the upstream sig-
nalling of the hTERT transcriptional activation, such as estro-
gen and progesterone[152,165,166], and retinoids[167,168].
Tissue-dependent expression might be based on hormone-
dependent regulation of telomerase activity as suggested
by the fact that tamoxifen, an antiestrogenic agent, is able
to block hTERT transcription and cell growth in estrogen-
receptor positive breast tumour cells, but stimulates the tran-
s
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Exposure to GA and 17-AAG induced early inhibition of
telomerase activity, followed by inhibition of cell prolifera-
tion. Interestingly, like a predictive marker, the basal level of
telomerase activity seems to have played a role in the cellu-
lar response to ansamycin, as the cells with markedly lower
telomerase activity showed an apoptotic response almost two-
fold compared to parental cells.

Recently, it has been shown in human ovarian cancer
cells, that 17-beta-estradiol induces telomerase activity by
post-transcriptional regulation via Akt-dependent phospho-
rylation of hTERT[176]. Thus, the phosphorylation of Akt
might be a key event in the induction of telomerase activ-
ity in cancer cells. As phosphorylation is essential for the
functioning of the enzyme, one can imagine many strate-
gies to influence telomerase activity via such co-factors.
Taking advantage of such knowledge, several studies have
shown that the activation of protein phosphatase 2A (PP2A)
decreases telomerase activity in tumour cells like melanoma
and breast, whereas okadaic acid, an inhibitor of PP2A, stim-
ulates both hTERT phosphorylation and telomerase activity
[175,177–179]. Furthermore, using PKC inhibitors such as
bis-indolylmaleimide I, a significant inhibition of telomerase
activity has been observed in nasopharyngeal carcinoma cells
[180,181]and in cervical cancer cell lines[182].

Finally, the assembly of the telomerase components seems
to happen at the nucleolar level[78,183,184], and it is known
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cription of hTERT in endometrial cancer cells[169,170].
evertheless, given the tissue-specific expression of nu

etinoic-acid receptors (RAR), a tissue-selective therapy
eting telomerase in tumour cells by synthetic agonists
s a dual-liganded retinoid-X receptor (RXR) and RAR
ha has been proposed[171]. Interestingly, the latter stud
emonstrated recently that the cross-talk created bet
ARalpha and the retinoid-X receptor when dual-ligan

o their respective agonists, results in a strong synerg
ownregulation of hTERT and subsequent cell death.

.3.2. Post- transcriptional level
Splicing of the hTERT mRNA is an important regu

ory mechanism and one particular splice product has
ound to be a dominant negative inhibitor of telomer
ctivity [83]. Furthermore, regulation of growth and telo
rase activity in skin cells has been uncovered sugge
dual c-Myc-dependent inhibition and alternative hTE

plicing [172]. Telomerase is also associated with sev
ccessory proteins like TEP-1, p23, hsp90 (Fig. 2) and inter-
cts with modifying enzymes like phosphatase A, pro
inase C, Akt-kinase and others that play important role
ssembly and function of the holoenzyme or regulate

ranslational modification. In particular, blocking the hs
haperone function leads to inhibition of telomerase as
ly [76,173–175]. Recently, Villa et al.[174] investigated

he effect exerted by the ansamycin antibiotics geldanam
GA) and 17-allylamino,17-demethoxygeldanamycin (
AG), two well-known inhibitors of the hsp90 chapero

unction, on telomerase activity in human melanoma c
hat telomerase interacts with nucleolin[185]. Further, the
oss of the extreme N-terminal domain of hTERT (1–1
hich targets the nucleolar localization of the protein, h
ers the full telomerase function[186]. Additionally, the
ucleolar shuttling seems to be impaired in tumour and t

ormed cells[187]. Clearly, the subcellular localization
elomerase is an important mechanism of functional r
ation, and needs to be kept in mind when designing
nti-telomerase and telomere therapies.

.4. Targeting the telomeres and associated proteins

To target directly the element that seemingly forces
nto crisis, the length of telomeres, has largely enriched
evelopment of anticancer candidates. Emerging evid
roposes that it is the shortest telomeres rather than
ge telomere length that cause chromosome end fusion
poptosis in telomerase-inhibited cells[188]. However, it is
till not fully known what mechanisms and molecular ac
re implicated in the telomere dysfunction related cell cr

.4.1. G-quadraduplex DNA-interactive compounds
The G-rich single stranded telomere overhang is ab

old back on itself in vitro to form 4-stranded G quad
lex (or tetraplex) structures, which are poor substrate

elomerase. A second model, equally evidenced in
y Titia de Lange’s laboratory, suggests that the telom
epeated sequence folds back on itself to form a du
oop structure termed T-loop[17]. Nevertheless the stru
ure of human telomeres in vivo is not fully determined,
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it remains unclear whether the chromosome ends actually
form T-loop structures, G quadruplexes, or other structures in
vivo (Fig. 1). However, some very potent telomere targeting
agents include G quartet interactive agents, also called “G4”
molecules. The principle of action of G4 molecules is to stabi-
lize the G quadruplex structures, presumably by intercalation,
and therefore block the telomerase during the elongation
step. A number of G-quartet stabilizing agents are currently
under investigation. They belong to different molecular fam-
ilies such as ethidiums, dibenzophenanthrolines, triazines,
acridines or pentaoxazoles. However, porphyrin, acridine,
anthraquinones and fluorenone-based compounds are until
now the most promising ones.

In particular, trisubstituted acridine derivatives are
very potent and selective telomerase inhibitors[189]. The
G-quadruplex interacting agent, 9-[4-(N,N-dimethylamino)-
phenylamino]-3,6-bis(3-pyrrolodinopropionamido) acri-
dine, also called BRACO-19, represents one of the most
potent cell-free inhibitors of human telomerase yet described
(50% inhibitory concentration of only 115 nM). A major
advantage of BRACO-19 is to avoid acute nonspecific
cytotoxicity at equivalent concentrations required to com-
pletely inhibit telomerase activity, at least in human breast
cancer cells, and a marked reduction in cell growth has
been observed in these conditions[190]. Interestingly, in
vivo studies using non-toxic doses of BRACO-19 in mice
p ced
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telomere shortening[196]. The telomere instability involved
telomere end fusions and anaphase bridges. Interestingly,
these molecules also had antiproliferative effects in a cell
line with ALT-mechanism.

Another inhibitor candidate is telomestatin (SOT-095),
which is a natural product from Streptomyces anulatus[197].
Recently, it has been demonstrated that telomestatin has
an important effect on the conformation of intracellular
G-overhangs[198]. The competition experiments indicated
that telomestatin strongly binds in vitro and in vivo to the
telomeric overhang impairing its single-stranded conforma-
tion, hence progressively reducing the G-overhang size with
concomitant delayed loss of cell viability. Telomestatin has
recently been tested on myeloma cells[199] and was able
to induce an inhibition of telomerase activity, reduction in
telomere length, and apoptotic cell death. Remarkably, no
changes were seen in the expression of genes involved in cell
cycle, apoptosis, DNA repair, or recombination, suggesting
that telomestatin exerts its antiproliferative and proapoptotic
effects specifically through the telomeric pathway. Telomes-
tatin has further been tested on leukemia U937 and NB4
cells[200] where it inhibited telomerase activity followed by
telomere shortening. Enhanced chemosensitivity to daunoru-
bicin and cytosine-arabinoside was also observed. Interest-
ingly, in the same study, telomere shortening associated
with apoptosis by telomestatin was demonstrated in freshly
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reviously treated with paclitaxel and bearing advan
tage human vulval carcinoma xenografts, induced a si
ant increase in antitumour effect compared to mice tre
ith paclitaxel alone [190]. Furthermore, BRACO-1

reatment of uterus carcinoma xenografted mice has
ble to inhibit 96% of tumour growth, and the treatm
as accompanied by loss of nuclear hTERT expression

elomere dysfunction[191].
The quinoline-substituted triazines, called 115405

2459 are two other potent G-quadruplex-stabilizing c
ounds with an IC50 for in vitro telomerase inhibition
1 and 130 nM, respectively[192]. Ligand 115405 induce
dose-dependent decrease in telomerase activity in tr

ells, and both ligands had antiproliferative properties. In
icular, the ligand 115405 was active on several human ca
ell lines, but also on immortalized human cell lines inc
ng the ALT cell line GM847DM, an SV40 immortalized lu
broblast cell line, and a telomerase immortalized fibrob
t was further demonstrated that telomerase activity is
he main target of the 12459 ligand, and that resistan
ntiproliferative activity might be associated with hTE

unctions and telomere capping alteration[193,194]. Fur-
her studies have suggested that telomerase downregu
f 12459 is mediated by hTERT RNA alternatively splic

soforms through stabilization of quadruplexes located in
TERT intron 6[195].

Recently, new G4-ligands such as 2,6-pyrid
icarboxamide derivatives have shown massive apop
ffects using low concentrations in glioma cells relate
ell cycle alterations and telomere instability rather t
btained leukemia cells from acute myeloid leukemia (AM
atients.

Other approaches use the advantages of peptide n
cids (PNAs) to target the telomeric G-rich strand, and
fficacy to reverse the immortality of transformed hum
broblasts has been tested[201]. The experiments result

n increased cell death rate by apoptosis. Further, a co
ation of this anti-telomere PNA inhibitor with a PNA th
dditionally blocked telomerase activity resulted in a ne
omplete inhibition of colony growth, induction of apopto
nd reduction in telomere length[201]. These observation

ndicate that an enhanced efficacy for therapeutic approa
an be reached by targeting multiple, distinct mechanism
elomere maintenance.

.4.2. Conventionnal cytotoxic compounds
Cisplatin (CDDP) is a well-known alkylating agent us

n numerous chemotherapy regimens to treat cancer.
ntra- and interstrand covalent bridges blocking the trans
ion and/or replication of DNA assure the cytotoxic effec
DDP. Its effect on telomeric DNA is less understood,
DDP has clearly a high affinity for the nucleophilic sites
uanidine and adenine nucleotides, and therefore, intras
ovalent bonds between two consecutive guanosine
nd/or interstrand bounds are predicted in the telom
TAGGG repeat region. Effectively, it has been demonstr

n vitro that CDDP not only forms 1,2-intrastrand addu
n double stranded telomere sequences[202], but also cross

inks adenines and guanines brought sufficiently close to
ther on the G-quadruplex structure of the single-stra



204 K.A. Olaussen et al. / Critical Reviews in Oncology/Hematology 57 (2006) 191–214

telomere overhang[203,204]. This suggests that CDDP-
mediated cross-linking of the G-quadruplex structures could
prevent structured single-stranded telomere sequences from
unfolding and might therefore inhibit telomerase activity.
Moreover, CDDP has been reported as an inhibitor of telom-
erase activity in human testicular cancer cells and a signif-
icant loss of telomere length has been observed in CDDP-
treated HeLa cells and hepatoma cells[205,206]. Interest-
ingly, synergism between CDDP and telomerase inhibition by
the 2′,5′-oligoadenylate linked anti-hTR oligonucleotide has
been observed both in vitro and in animal models[141,142].
Further, telomere dysfunction through downregulation of
the c-Myc gene increased the sensitivity of melanoma cells
to CDDP and the novel anti-cancer drug ecteinascidin-743
[119]. Therefore, sustained efforts to better understand the
loss of telomere length due to CDDP are highly warranted.

Other clinically used cytotoxic compounds have shown
to have some effect on telomere length or telomerase activ-
ity, such as doxorubicin in gastric cell lines[207]. Direct
telomere cleavages by topoisomerase II activity following
treatment with etoposide (VP16) have also been reported
[208], and synergism between etoposide and telomerase inhi-
bition has been observed in immortalized fibroblasts and
in human breast cancer cell lines. Other cytotoxic drugs
might have surprising and unexpected effects on telom-
eres. A recent example is the diterpenoid quinine called
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showed that TRF1 is important for telomere length regulation
but also essential for normal cell growth, telomere struc-
ture and chromosomal stability[211]. Therefore, diminishing
telomere function by targeting telomere-associated proteins
does not necessarily target exclusively cancer cells and may
even promote genomic instability in normal cells contribut-
ing to increased cancer incidence. Indeed, recently pub-
lished experiments have shown that cycling human fibroblasts
exhibit weak expression of hTERT and telomerase activity.
This low level of activity has essential biological conse-
quences even if this telomerase expression is insufficient to
maintain overall telomere length in normal cells[212]. Addi-
tionally, it has been shown that telomere length is decreased in
tumours or pre-invasive lesions as compared to normal tissues
[213–217], hence telomeres may possibly have a different
structure in normal cells compared to tumour cells. Changes
in the structure of telomeres are already essential in the pro-
cess of senescence[26]. Clearly, approaches targeting the
telomeric capping function raise completely new challenges.
It is, however, tempting to speculate that such strategies might
become very tumour-specific if properly coupled with a vec-
tor system under an hTERT promoter control. Combining
this approach with for instance Karsleder’s mutant TRF2
could theoretically be a way to target cancer cells. Interest-
ingly, important studies from Seimiya and colleagues have
recently shown that combinations of tankyrase and telom-
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alvicine, which is a novel DNA topoisomerase II inhib
hat exerts its antitumour effect by trapping the enzy
NA cleavage complexes[209]. Salvicine was shown

ndirectly inhibit telomerase activity in the lung carcino
ell line A549 without affecting the expression of hTE
r hTR mRNA. But most interestingly, salvicine sho
ned the telomere length by 30% after only 4 h of ex
ure [210]. Further studies should permit to distingu
etween specific and unspecific drug effects at this
nd clear out the mechanism of such dramatic replica

ndependent telomere loss. However, it illustrates how a
ination between targeted and non-targeted therapy m
ive unexpected synergisms. For instance, it could be
sting to evaluate the effect of coupling a salvcine treat
ith a highly specific telomerase inhibitor on different c

ines.

.4.3. Targeting telomere-associated proteins
Targeting telomere-binding proteins leads to deregula

f telomere maintenance. It has been proposed that the u
ing of only one or some few telomeres might signal cell c
rrest and apoptosis in human cancer cells[144]. Karlsede
t al. have already shown that the introduction of a do
ant negative TRF2 into cancer cell lines results in telom
hortening and rapid p53-dependent apoptosis that i
ependent on initial telomere length[33]. Further, it has bee
roposed that TRF1 acts as acis inhibitor of telomerase activ

ty [23]. According to this model, targeting TRF1 could b
otential target for anticancer drug development. Howev
ecent study using conditional TRF1-deficient mouse ES
-

rase inhibitors at nontoxic doses may also be an effe
nticancer therapeutic approach[218]. The authors exploite

he knowledge of tankyrase action by asking whether ma
lating the ability to recruit telomerase to act on telom
ould prevent the maintenance of a new telomere equilib
aintenance length in tumour cells. First, a nontoxic d
f the telomerase inhibitor MST-312, a chemical deriva
f a component of green tea, partially inhibited telome
nd shortened the telomere lengths from 5 kb to a new s

ength of 4 kb. Then adding 3-aminobenzamide (a gen
ARP inhibitor that inhibits tankyrase) to the previou
ST-312-exposed cells caused telomere shortening
ntil the cells entered crisis and died, whereas no such
as seen in control cells. Clearly, advances in strategie
eting telomere-binding proteins are underway and mig
owerful anticancer candidates.

. Immunotherapy

The asset for antitumoural vaccination emerged f
he discovery that almost all tumours express antigen
act, human tumour-associated-antigens (TAA) have
een characterized in most malignancies, particular
elanoma. Such studies[219,220] have shown in canc
atients that TAA involves the generation of specific c

oxic T lymphocytes (CTLs) that recognize peptides der
rom these antigens. These specific CTLs can destro
orresponding tumours in vitro. Therefore, immuniza
ith TAA recognized by tumour specific CTLs, also cal
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adoptive T cell therapy, should represent an effective strategy
for cancer immunotherapy.

The catalytic subunit of telomerase hTERT is a promising
candidate as a universal TAA and it can be processed by the
proteosomes and be presented on the surface of cancer cells in
an MHC context as an antigen recognized by CTLs. Several
working groups have isolated hTERT-specific CTLs able to
lyse cancer cell lines and tumours in a telomerase and MHC-
restricted fashion. hTERT-derived peptides can be identified
for several of the prevalent MHC haplotypes. Vonderheide
et al. [221] identified an HLA-A2 binding hTERT-derived
peptide generating a CTL line that kills hTERT positive
tumour cells in vitro from a broad range of human tumours.
Other studies discovered new hTERT-derived peptides that
were also able to generate specific CTLs that kill tumour
cells in vitro [222–225]. In addition, Nair et al.[226] used
hTERT-RNA transfected DCs to stimulate hTERT specific
CTLs in vivo, which successfully killed renal and prostatic
human tumour cells in a mouse model. Further, it has recently
been demonstrated that hTERT-transduced CTLs inhibit the
growth of human melanoma in nude mice[227]. Following
these very promising preclinical results, several phase I trials
using hTERT as a TAA have started. The first to be published
evaluated 10 patients with metastatic renal cancer who had
received RNA-transfected DCs[228]. After the treatment,
TAA-specific CTLs, including hTERT were detected in six
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new phase I trials, as the National Cancer Institute which
conducts two trials studying the effectiveness of hTERT vac-
cination in patients with advanced breast, sarcoma or brain
cancer. The proof for clinical benefit or not of an hTERT-
specific immunotherapy should therefore be established in a
near future.

5. Gene therapy

All genes have a promoter whose role is to control the
expression level. Different tumour-or tissue specific promot-
ers, such as the alpha-fetoprotein promoter in hepatocellular
cancer[230], the DF3/MUC1 antigen promoter in breast can-
cer [231], the prostate-specific antigen promoter in prostate
cancer[232–234]and the hTERT promoter[235,236]have
successfully been studied in animal models. The approach,
however, is limited to specific tumour types that express the
corresponding tumour-specific antigens. Therefore, hTERT
is an excellent candidate because its expression is reported in
about 85% of human primary cancers.

Three different strategies of antitumour gene therapy
under the control of tumour/tissue-specific promoters have
been developed: (i) induce the expression of proapoptotic
genes, (ii) control the assembly of oncolytic viruses, and (iii)
activate prodrugs in tumour cells.
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atients. No specific CTLs against self-antigens expre
y normal renal tissue were characterized. As for the clin
esponse, seven patients were alive after a mean follow-
9.8 months.

Another method of active immunotherapy against hTE
eptides has recently been developed (Millard et
roc. ASCO 2004, Abstract 2519). Here, transfected

ymphocytes with a plasmid that incorporates two HLA-
estricted hTERT peptides were employed. Nine pat
ith advanced prostate cancer androgen were includ

he study and no toxic side effects were reported. The t
enic B-lymphocyte immunization induced a T cell respons
gainst hTERT in four patients. Moreover, a vaccination s
gy against telomerase using hTERT-transfected DCs
atients with metastatic prostate cancer has been teste
t al., Proc. ASCO 2004, Abstract 2507). In all subje
TERT-specific CTLs could be observed and a biolog
esponse (PSA velocity) was shown in a few patients. Fin
onderheide et al.[229] recruited seven HLA-A2 positiv
atients with metastatic breast or prostate cancer for v
ation with DCs pulsed with a HLA-A2 restricted hTER
eptide. hTERT-specific CTLs was induced in four pati
nd one clinical partial response was associated with in

ion of CD8+ tumour infiltrating lymphocytes at the site
umour.

All these data provide a scientific rationale for contin
linical investigations of telomerase immunotherapy str
ies. Clearly, immunotherapy against telomerase can ind

ew minor clinical responses without major treatment-rel
ide effects. Actually, several American groups have initi
Firstly, many studies have used the hTERT promote
rive proapoptotic genes in vitro. The most significant o
re Bax[237,238], caspases 6–8[239–241], FAS-associate
rotein with death domain (FADD)[242,243], and TRAIL

244–246]. A selective expression of these transgene
elomerase-positive tumours has been achieved.

A second approach has been to consider gene-viral s
ies as an oncolytic therapy. Here, the most difficult obs
as been to achieve viral replication exclusively restri

o tumour cells. Different approaches that have describ
umour-selective viral replication are: (i) introducing de
ions of functional gene regions that are essential for
ient replication in normal cells but expendable in tum
ells; (ii) introducing tumour/tissue-specific promoters
iruses to limit the expression of replication genes in
al cells; (iii) changing the viral coat to selectively boost
ptake into tumour cells. Several types of these conditio
eplicative (CR) viruses have actually been tested bo
reclinical and clinical trials, but a CR adenovirus (CRA

s the most frequently used[247–250]. It has been show
hat the hTERT promoter could be used to regulate tum
pecific expression of genes necessary for viral replica
o that viral replication only occurs in telomerase-pos
ancer cells. For example, Su et al.[251] showed that th
RAD virus CNHK300 is excellent in terms of select

eplication or oncolytic effects, and is exempt of side effe
n the basis of this knowledge, Zhang et al.[235] used the
denovirus CNHK300-mE, which uses the hTERT prom

o drive the adenoviralE1A gene and a mouse endosta
mE) gene, which is an angiogenic inhibitor. The study
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conducted in a gastric cell line xenograft murine model, mon-
itoring the oncolytic activity and endostatin secretion. The
reported results were impressive because only telomerase-
positive cancer cells were infected with CNHK300-mE and
the virus induced a selective replication of the adenovirus and
production of endostatin.

Finally, the “suicide gene” is the third strategy for hTERT-
driven cancer gene therapy. Several studies have developed
different suicide genes capable of activating prodrugs into
cytotoxic drugs in malignant cells. The prodrug induces
selective killing of the cancer cells in presence of a suicide
gene such as (i) bacterial cytosine deaminase with the prodrug
5-fluorocytosine[252], (ii) the thymidine kinase and gan-
cyclovir treatment[253,254], and (iii) the bacterial nitrore-
ductase for the pro-alkylating agent CB1954[255,256]. The
studies show that gene or viral therapy strategies using the
hTERT promoter are potentially safe and show powerful cyto-
toxic effects. It seems therefore reasonable to propose such
strategies in future clinical trials, unless the regulatory author-
ities remain unwilling to accept trials based on gene therapy.

6. Therapeutic potential and limitations

It has long been argued that several criteria are
needed to properly validate candidate drugs against telom-
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activity may contribute to tumourigenesis independently of
its telomere lengthening effects, such as via an anti-apoptotic
effect of hTERT[259–262]. It has also been shown that telom-
erase expression, independently of telomere length, produces
resistance to antiproliferative signals of TGFB in cultured
human mammary cells lacking p16INK4a[263]. On the other
hand, it is believed that apoptosis is achieved by a critical
telomere shortening or a telomere structure alteration. There
are many recent arguments supporting that changes in the
telomere structure itself might induce cell death, also inde-
pendently of initial telomere length. Indeed, G4 molecules
[189–191,193–200], telomere mutation induction by hTR-
modification [143], and deprotection of telomeres (as for
instance by a dominant negative TRF2)[33] are some exam-
ples aiming to take advantage of changes in the telomere
structure to induce rapid cell death. As, we have seen in this
review, direct telomere targeting is an interesting approach
for further drug-development. However, the main problem
with direct telomere targeting remains the potential toxicity
in telomerase-negative somatic cells. Additionally, inhibition
of telomerase could increase tumour malignancy by increas-
ing the genomic instability of the cell. Therefore, rapid, but
tumor-specific induced apoptosis should be prioritised. How
to achieve rapid apoptosis by targeting telomeres or even
telomerase is still needed to be fully explored, but combining
several strategies exposed in this review, such as developing
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res/telomerase. Such criteria usually state that (i) the
ion of inhibitors should lead to progressive telomere sho
ng, (ii) growth arrest/cell death should start after a signifi
ag-phase, and (iii) the time necessary to observe gr
rrest should vary depending on initial telomere length. E

ively, it is known that telomere shortening requires a ce
umber of cell divisions to become phenotypically ma

est. In some models, after targeting telomerase, up t
ell doublings have been needed to observe apopto
enescence in vitro[93]. Delay in efficacy is therefore a
mportant consideration with agents that target telome
n particular in tumours exhibiting long telomeres and
ong doubling times. Thus, initial debulking chemother
as been proposed, immediately followed by a prolon
dministration of telomerase inhibitors targeting a mini
esidual tumour volume[257]. Target the telomerase in t
djuvant setting, or use it in combination with radiation th
py or hormonal therapy to boost tumour response are
otential areas of development. To our knowledge, no ex
ents have yet explored the potential of radio-sensitisatio
TERT inhibitors. Screening for patients whose tumours
haracterized by relatively short telomeres could also b
ome interest. Finally, concomitant therapy with telome
nhibitors and anti-angiogenic agents has also been advo
258].

However, in recent years, the therapeutic potential o
eting the telomeres or telomerase has been modifie
dditional arguments. Several of the studies reviewed
ave shown evidence for rapid cell death independent

nitial telomere length, and some suggest that telome
ector systems with for instance a dominant negative T
nder an hTERT promoter control, could be one of m

nteresting leads to follow.
Blocking resistance to telomerase inhibitors is ano

mportant consideration. The major challenge is prob
ow to circumvent the ability of tumour cells to solve exc
ive telomere shortening by mechanisms that do not inv
elomerase. The mass of evidence for an alternative m
ism of maintenance of telomere length in human tum
nd tumour-derived cell lines is compelling[264]. There-

ore, at least theoretically, the use of telomerase inhib
ould increase the risk of selection for ALT-cells. The c
ept of ALT-related therapy resistance was recently sust
y a study where inhibition of telomerase was achie

n a colon cancer cell line having pre-existing misma
epair (MMR) defects[265]. The authors used the domina
egative hTERT approach to suppress telomerase activi
bserved the appearance of a telomerase-independent

ike telomere elongation in this specific cell line.
Ultimately, what would be the best-fitted strategy in h

rogeneous tumours? Recent work suggests that ALT
elomerase based mechanisms can coexist artificially in
umour cell lines[266–268]and presumably, human po
lonal tumours might contain cells with either ALT or no
LT (hTERT+) phenotypes. It means that some hum

umours could develop resistance to strategies that targe
ne of the mechanisms of telomere maintenance and

ore, a combination of both telomerase and ALT inhibi
hould be used. However, it has recently been possible to
ress the ALT-mechanism in immortalized fibroblasts
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osteosarcoma cells by overexpressing Sp100, a constituent
of promyelocytic leukemia nuclear bodies[269]. The Sp100
protein was in fact sequestering the MRE11, RAD50, and
NBS1 recombination proteins away from APBs, resulting
in progressive telomere shortening. Therefore, characteriza-
tion of every molecular component of the ALT mechanism is
important to identify new ALT inhibitors as additional targets
for drug development. Additionally, as both telomerase and
ALT must gain access to the telomere to act, one might expect
that at least some of the proteins involved at least partially
overlap. So it might be possible to identify common targets
for simultaneous inhibition of both mechanisms.

Concerning the predicted toxic side effects of telomerase
drugs, one can expect these to be restricted to highly prolifer-
ating tissues. Therefore, haematological toxicity is the most
expected side effects together with immunologic, cutaneous,
and gonadal toxicity. Yet, no impairment of stem cell func-
tion has been observed in murine models of anti-telomerase
immunotherapy, but mouse and human telomere biology dif-
fer in many ways. Therefore, long-term effect on stem cells
after telomerase therapy remains unknown. However, there
might be specific ways to attenuate toxic side effects of tar-
geting telomerase. For instance, a pre-clinical in vivo study
that assessed the interactions between telomere dysfunction
and p53 in cells and organs of telomerase-deficient knock-out
mice has concluded that the deletion of p53 can significantly
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awaited. A way to improve the chances for success of
the upcoming clinical trials would be to enrich the study
population with mainly selected patients. These would for
instance be patients with hTERT positive tumours pre-
senting short telomeres. Selection for such patients would
implicate validated biological methods of immunohisto-
chemistry, quantitative fluorescence in situ hybridization
(Q-FISH, Flow-FISH), Southern blotting, or other meth-
ods such as a recently developed hybridometric assay
estimating mean telomere lengths[270]. The choice of
candidate telomere/telomerase based drugs to be tested in
clinical trials would also depend on further results suggest-
ing a synergistic effect with conventional chemotherapy, or
other preclinical results supporting the use of therapeutic
cocktails.
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