

Chapter 11

Approximation Algorithms

Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

Approximation Algorithms

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says you're unlikely to find a re unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- **.** Solve problem to optimality.
- . Solve problem in poly-time.
- . Solve arbitrary instances of the problem.

-approximation algorithm.

- **.** Guaranteed to run in poly-time.
- . Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution 's value is close to optimum, without even knowing what optimum value is!

11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time t_i . .

- . Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let $J(i)$ be the subset of jobs assigned to machine i. The load of machine i is $L_i = \sum_{j \in J(i)} t_j$. .

Def. The makespan is the maximum load on any machine $L = max_i L_i$.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.

- . Consider n jobs in some fixed order.
- . Assign job j to machine whose load is smallest so far.

$LIST - SCHEDULING(m, n, t₁, t₂, ..., t_n)$

```
1: for i = 1 to m do
2: L_i \leftarrow 03: J(i) \leftarrow \emptyset4: end for
5: for j = 1 to n do
6: i = argmin_k L_kৰ"?
7: J(i) \leftarrow J(i) \cup j8: L_i \leftarrow L_i + t_i9: end for
10: return J(1), \cdots, J(m).
```
Implementation. O(n log m).

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- **First worst-case analysis of an approximation algorithm.**
- . Need to compare resulting solution with optimal makespan L^* .

Lemma 1. The optimal makespan $L^* \geq \max_j t_j$. .

Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_i t_i$. Pf. $\frac{1}{m}\sum_j t_j$.

- **.** The total processing time is Σ_j t_j. .
- . One of m machines must do at least a 1/m fraction of total work. •

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L_i of bottleneck machine i.

- . Let j be last job scheduled on machine i.
- . When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \Rightarrow L_i - t_j \le L_k$ for all $1 \le k \le m$.

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L_i of bottleneck machine i.

- . Let j be last job scheduled on machine i.
- . When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \Rightarrow L_i - t_j \le L_k$ for all $1 \le k \le m$.
- . Sum inequalities over all k and divide by m:

$$
L_i - t_j \leq \frac{1}{m} \sum_k L_k
$$

= $\frac{1}{m} \sum_k t_k$
Lemma 2 $\rightarrow \leq L^*$

Now	$L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq L^*} \leq 2L^*.$
1	
Lemma 1	

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

 $m = 10$

list scheduling makespan = 19

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

optimal makespan = 10

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

 $LPT(m, n, t_1, t_2, \cdots, t_n)$ 1: Sort jobs so that $t_1 \geq t_2 \geq \cdots \geq t_n$ 2: for $i = 1$ to m do 3: $L_i \leftarrow 0$ 4: $J(i) \leftarrow \emptyset$ 5: end for 6: for $j = 1$ to n do 7: $i = \text{argmin}_k L_k$ 8: $J(i) \leftarrow J(i) \cup j$ 9: $L_i \leftarrow L_i + t_i$ 10: end for 11: return $J(1), \cdots, J(m)$.

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine. .

Lemma 3. If there are more than m jobs, $L^* \geq 2 t_{m+1}$. . Pf.

- . Consider first m+1 jobs ${\sf t}_1$, ..., ${\sf t}_{{\sf m}$ +1. .
- . Since the $\sf t_i$'s are in descending order, each takes at least $\sf t_{m\text{-}1}$ time. \Box
- . There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. •

Theorem. LPT rule is a 3/2 approximation algorithm. Pf. Same basic approach as for list scheduling.

$$
L_{i} = \underbrace{(L_{i} - t_{j})}_{\leq L^{*}} + \underbrace{t_{j}}_{\leq \frac{1}{2}L^{*}} \leq \frac{3}{2}L^{*}.
$$

(by observation, can assume number of jobs $> m$)

Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight? A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation. Pf. More sophisticated analysis of same algorithm.

- Q. Is Graham 's 4/3 analysis tight?
- A. Essentially yes.

Ex: m machines, $n = 2m+1$ jobs, 2 jobs of length $m+1$, $m+2$, ..., $2m-1$ and one job of length m.

11.2 Center Selection

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$. .

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$. .

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation

- dist(x, y) = distance between x and y.
- dist(s_i, C) = min $c \in C$ dist(s_i, c) = distance from s_i to closest center.
- r(C) = max_i dist(s_i, C) = smallest covering radius.

Goal. Find set of centers C that minimizes $r(C)$, subject to $|C| = k$.

Distance function properties.

- dist(x, x) = 0 (identity)
- dist(x, y) = dist(y, x) (symmetry)
- **.** dist(x, y) \le dist(x, z) + dist(z, y) (triangle inequality)
-

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

 $GREEDY - CENTER - SELECTION(k, n, s₁, s₂, ..., s_n)$ 1: $C \leftarrow \emptyset$. 2: for $i = 1$ to k do 3: Select a site s_i with maximum distance dist(s_i , C) 4: $C \leftarrow C \cup s_i$ $5:$ end for $6:$ return C

Observation. Upon termination all centers in C are pairwise at least r(C) apart.

Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) \times \frac{1}{2} r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- . Exactly one c_i^\star in each ball; let c_i be the site paired with $c_i^\star.$
- . Consider any site s and its closest center c_i^\star in $\mathcal{C}^\star.$
- dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i*) + dist(c_i*, c_i) \leq 2r(C*).
- Thus $r(C) \leq 2r(C^*)$. •

Center Selection

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless $P = NP$, there no p -approximation for center-selection problem for any $\rho \leq 2$.

11.4 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

weight = $2 + 2 + 4$

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \ge 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

Lemma. For any vertex cover S and any fair prices $\mathsf{p}_e\colon\thinspace \Sigma_e\;\mathsf{p}_e\leq\;\mathsf{w}(\mathsf{S}).$ Proof. The contract of the con

$$
\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S).
$$

each edge e covered by at least one node in S

sum fairness inequalities for each node in S

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

WEIGHTED – VERTEX – COVER(G, w)

- 1: $S \leftarrow \emptyset$
- 2: for each $e \in E$ do
- 3: $p_i \leftarrow 0$.
- $4:$ end for
- 5: while there exists an edge (i, j) such that neither i nor j is tight) do
- Select such an edge $e = (i, j)$. 6:
- Increase p_e as much as possible until *i* or *j* is tight. $7:$
- 8: end while
- 9: $S \leftarrow$ set of all tight nodes.

10: return S.

Pricing Method

Figure 11.8

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation. Pf.

- . Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S^* be optimal vertex cover. We show $w(S) \le 2w(S^*)$.

$$
w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \le \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \le 2w(S^*).
$$

\nall nodes in S are tight
\n
$$
S \subseteq V, \text{ each edge counted twice} \text{ fairness lemma}
$$

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph $G = (V, E)$ with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph $G = (V, E)$ with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

Nodel inclusion of each vertex i using a 0/1 variable x_i **.**

 $x_i = \begin{cases} 0 & \text{if } i \in I, \\ 1 & \text{if } i \in I. \end{cases}$ 0 if vertex *i* is not in vertex cover 1 if vertex *i* is in vertex cover $\begin{pmatrix} 0 & \text{if } v \end{pmatrix}$ $\left\{\begin{array}{ccc} 0 & \text{if } 0 \\ 1 & \text{if } 0 \end{array}\right.$ $\overline{\mathcal{L}}$

Vertex covers in 1-1 correspondence with 0/1 assignments: $S = \{i \in V : x_i = 1\}$

- **D**bjective function: minimize $\Sigma_i w_i x_i$.
- **n** If (i,j)∈E, must take either i or j: $x_i + x_j \ge 1$.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

$$
(ILP) \min \sum_{i \in V} w_i x_i
$$

s.t. $x_i + x_j \ge 1$ $(i,j) \in E$
 $x_i \in \{0,1\} \quad i \in V$

Observation. If x^* is optimal solution to (ILP), then $S = \{i \in V : x^*_{i} = 1\}$ is a min weight vertex cover.

Linear Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- . Input: integers c_j, b_i, a_{ij}. .
- Output: real numbers x_i . .

(P) max
$$
\sum_{j=1}^{n} c_j x_j
$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ $1 \le i \le m$
 $x_j \ge 0$ $1 \le j \le n$

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time. Interior Point Method. [Karmarkar 1984] Can solve LP in poly-time and in practice.

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

$$
(LP) \min \sum_{i \in V} w_i x_i
$$

s.t. $x_i + x_j \ge 1$ $(i,j) \in E$
 $x_i \ge 0 \quad i \in V$

Observation. Optimal value of (LP) is \le optimal value of (ILP). Pf. LP has fewer constraints.

Weighted Vertex Cover

Theorem. If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_{i} \geq \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- **.** Consider an edge $(i, j) \in E$.
- Since x^{\star} _i + x^{\star} _j ≥ 1 , either x^{\star} _i $\geq \frac{1}{2}$ or x^{\star} _j $\geq \frac{1}{2}$ \Rightarrow (i, j) covered.

Pf. [S has desired cost]

 L Let S^* be optimal vertex cover. Then

$$
\sum_{i \in S^*} w_i \ge \sum_{i \in V} w_i x_i^* \ge \sum_{i \in S} w_i x_i^* \ge \frac{1}{2} \sum_{i \in S} w_i.
$$

LP is a relaxation

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

```
Theorem. [Dinur-Safra 2001] If P \ne NP, then no p-approximation
for \rho < 1.3607, even with unit weights.<br>
10 \sqrt{5} - 21<br>
Open research problem. Close the gap.
                  10 \sqrt{5} - 21
```
11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. $(1 + \varepsilon)$ -approximation algorithm for any constant $\varepsilon > 0$.

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack Problem

Knapsack problem.

- . Given n objects and a "knapsack."
- Item i has value $v_i \ge 0$ and weighs $w_i \ge 0$. \longleftarrow we'll assume $w_i \le W$
- . Knapsack can carry weight up to W.
- . Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

$$
W = 11
$$

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, positive weights w_i , positive values v_i , a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that:

$$
\sum_{i \in S} w_i \leq W
$$

$$
\sum_{i \in S} v_i \geq V
$$

SUBSET-SUM: Given a finite set X , positive values u_i , and an integer U, is there a subset $S \subseteq X$ whose elements sum to exactly U?

Claim. SUBSET-SUM \leq p KNAPSACK. Pf. Given instance (u₁, …, u_n, U) of SUBSET-SUM, create KNAPSACK instance:

$$
v_i = w_i = u_i \qquad \sum_{i \in S} u_i \le U
$$

$$
V = W = U \qquad \sum_{i \in S} u_i \ge U
$$

Knapsack Problem: Dynamic Programming 1

Def. OPT (i, w) = max value subset of items $1,..., i$ with weight limit w.

- ⁿ Case 1: OPT does not select item i.
	- OPT selects best of 1, …, i–1 using up to weight limit w
- ⁿ Case 2: OPT selects item i.
	- new weight limit = $w w_i$
	- OPT selects best of 1, ..., i-1 using up to weight limit $w w_i$

$$
OPT(i, w) = \begin{cases} 0 & \text{if } i = 0\\ OPT(i - 1, w) & \text{if } w_i > w\\ \max \{ OPT(i - 1, w), v_i + OPT(i - 1, w - w_i) \} & \text{otherwise} \end{cases}
$$

Running time. O(n W).

- $W = weight limit$.
- **Not polynomial in input size!**

Knapsack Problem: Dynamic Programming II

Def. OPT (i, v) = min weight subset of items 1, ..., i that yields value exactly v.

- ⁿ Case 1: OPT does not select item i.
	- OPT selects best of 1, …, i-1 that achieves exactly value v
- ⁿ Case 2: OPT selects item i.
	- consumes weight w_i , new value needed = $v v_i$
	- OPT selects best of 1, …, i-1 that achieves exactly value v

$$
OPT(i, v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0, v > 0 \\ OPT(i - 1, v) & \text{if } v_i > v \\ \min \{ OPT(i - 1, v), w_i + OPT(i - 1, v - v_i) \} & \text{otherwise} \end{cases}
$$

$$
V^{\star} \leq n \, v_{\text{max}}
$$

✔

Running time. $O(n \ V^{\star}) = O(n^2 \ v_{\text{max}}).$

- V^* = optimal value = maximum v such that OPT(n, v) $\leq W$.
- . Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.

- . Round all values up to lie in smaller range.
- . Run dynamic programming algorithm on rounded instance.
- . Return the best of optimal items in rounded instance and the item with largest value.

 $W = 11$

 $W = 11$

original instance and the rounded instance

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

$$
\overline{v}_i = \left| \begin{array}{c} \overline{v}_i \\ \overline{\theta} \end{array} \right| \theta, \quad \hat{v}_i = \left| \begin{array}{c} \overline{v}_i \\ \overline{\theta} \end{array} \right|
$$

- v_{max} = largest value in original instance
- $-\varepsilon$ = precision parameter
- θ = scaling factor = ϵ v_{max} / n

Observation. Optimal solution to problems with $\overline{\nu}$ or $\hat{\nu}$ are equivalent.

Intuition. $\overline{\mathcal{V}}$ close to **v** so optimal solution using $\overline{\mathcal{V}}$ is nearly optimal; \hat{V} small and integral so dynamic programming algorithm is fast. \hat{V}

Running time. $O(n^3 / \varepsilon)$.

- Dynamic program II running time is $O(n^2 \,\hat{\nu}_{\mathrm{max}})$, where

$$
\hat{v}_{\text{max}} = \left| \frac{v_{\text{max}}}{\theta} \right| = \left| \frac{n}{\epsilon} \right|
$$

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: $\bar{v}_i = \frac{v_i}{\Omega} \theta$ $v_i \mid t$ θ | \sim $\left| \nu_i \right|$ θ $\Big|$ 0 θ

Theorem. If S is solution found by our algorithm and S* is any other feasible solution then $(1+\varepsilon)\sum v_i \geq \sum v_i$ $i \in S$ $i \in S^*$

Pf. Let S* be any feasible solution satisfying weight constraint.

$$
\sum_{i \in S^*} v_i \leq \sum_{i \in S^*} \overline{v}_i
$$
\n
$$
\leq \sum_{i \in S} \overline{v}_i
$$
\n
$$
\leq \sum_{i \in S} (\overline{v}_i + \theta)
$$
\n
$$
\leq \sum_{i \in S} (v_i + \theta)
$$
\n
$$
\leq \sum_{i \in S} v_i + n\theta
$$
\n
$$
\leq (1+\varepsilon) \sum_{i \in S} v_i
$$
\n
$$
\leq n
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$
\n
$$
\log \log \text{round up by more than } \theta
$$