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Approximation Algorithms

Q.  Suppose I need to solve an NP-hard problem. What should I do?
A.  Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
n Solve problem to optimality.
n Solve problem in poly-time.
n Solve arbitrary instances of the problem.

-approximation algorithm.
n Guaranteed to run in poly-time.
n Guaranteed to solve arbitrary instance of the problem
n Guaranteed to find solution within ratio  of true optimum.

Challenge.  Need to prove a solution's value is close to optimum, without 
even knowing what optimum value is!



11.1  Load Balancing
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Load Balancing

Input.  m identical machines; n jobs, job j has processing time tj.
n Job j must run contiguously on one machine.
n A machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine i.  The
load of machine i is Li = j  J(i) tj. 

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing.  Assign each job to a machine to minimize makespan.



5

List-scheduling algorithm.
n Consider n jobs in some fixed order.
n Assign job j to machine whose load is smallest so far.

Implementation.  O(n log m).

Load Balancing:  List Scheduling
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Load Balancing:  List Scheduling Analysis

Theorem. [Graham, 1966]  Greedy algorithm is a 2-approximation.
n First worst-case analysis of an approximation algorithm.
n Need to compare resulting solution with optimal makespan L*.

Lemma 1.  The optimal makespan L*  maxj tj.   
Pf.  Some machine must process the most time-consuming job.  ▪

Lemma 2.  The optimal makespan 
Pf.  
n The total processing time is  j tj .
n One of m machines must do at least a 1/m fraction of total work.  ▪

L *  1
m t jj .
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Load Balancing:  List Scheduling Analysis

Theorem.  Greedy algorithm is a 2-approximation.
Pf.  Consider load Li of bottleneck machine i.
n Let j be last job scheduled on machine i.
n When job j assigned to machine i, i had smallest load.  Its load 

before assignment is Li - tj      Li - tj     Lk   for all 1  k  m.

j

0
L = LiLi - tj 

machine i

blue jobs scheduled before j
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Load Balancing:  List Scheduling Analysis

Theorem.  Greedy algorithm is a 2-approximation.
Pf.  Consider load Li of bottleneck machine i.
n Let j be last job scheduled on machine i.
n When job j assigned to machine i, i had smallest load.  Its load 

before assignment is Li - tj      Li - tj     Lk   for all 1  k  m.
n Sum inequalities over all k and divide by m:

n Now ▪


L i   t j  1
m Lkk

 1
m tkk

 L *

  



Li    (Li  t j )
 L*

1 2 4 3 4 
 t j

 L*
{     2L *.

Lemma 1

Lemma 2
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Load Balancing:  List Scheduling Analysis

Q.  Is our analysis tight?
A.  Essentially yes.

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

m = 10
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Load Balancing:  List Scheduling Analysis

Q.  Is our analysis tight?
A.  Essentially yes.

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m

m = 10

optimal makespan = 10
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Load Balancing:  LPT Rule

Longest processing time (LPT).  Sort n jobs in descending order of 
processing time, and then run list scheduling algorithm.
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Load Balancing:  LPT Rule

Observation.  If at most m jobs, then list-scheduling is optimal.
Pf.  Each job put on its own machine.  ▪

Lemma 3.  If there are more than m jobs, L*  2 tm+1.
Pf. 
n Consider first m+1 jobs t1, …, tm+1.
n Since the ti's are in descending order, each takes at least tm+1 time. 
n There are m+1 jobs and m machines, so by pigeonhole principle, at 

least one machine gets two jobs.  ▪

Theorem.  LPT rule is a 3/2 approximation algorithm.
Pf.  Same basic approach as for list scheduling.

          ▪
  



L i   (Li  t j )
 L*

1 2 4 3 4 
 t j

 1
2 L*

{     3
2 L *.

Lemma 3
( by observation, can assume number of jobs > m )
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Load Balancing:  LPT Rule

Q.  Is our 3/2 analysis tight?
A.  No.

Theorem.  [Graham, 1969]  LPT rule is a 4/3-approximation.
Pf.  More sophisticated analysis of same algorithm. 

Q.  Is Graham's 4/3 analysis tight?
A.  Essentially yes.

Ex:  m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, …, 2m-1 and 
one job of length m.



11.2  Center Selection
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center

r(C)

Center Selection Problem

Input.  Set of n sites s1, …, sn.

Center selection problem.  Select k centers C so that maximum 
distance from a site to nearest center is minimized.

site

k = 4
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Center Selection Problem

Input.  Set of n sites s1, …, sn.

Center selection problem.  Select k centers C so that maximum 
distance from a site to nearest center is minimized.

Notation.  
n dist(x, y) = distance between x and y.
n dist(si, C) = min c  C dist(si, c)  = distance from si to closest center.
n r(C) = maxi dist(si, C) = smallest covering radius.

Goal.  Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.
n dist(x, x) = 0 (identity)
n dist(x, y) = dist(y, x) (symmetry)
n dist(x, y)  dist(x, z) + dist(z, y) (triangle inequality)
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Greedy Algorithm:  A False Start

Greedy algorithm.  Put the first center at the best possible location 
for a single center, and then keep adding centers so as to reduce the 
covering radius each time by as much as possible. 

Remark:  arbitrarily bad!

greedy center 1

k = 2 centers site
center
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Center Selection:  Greedy Algorithm

Greedy algorithm.  Repeatedly choose the next center to be the site 
farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least r(C) 
apart.
Pf.  By construction of algorithm.
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Center Selection:  Analysis of Greedy Algorithm

Theorem.  Let C* be an optimal set of centers. Then r(C)  2r(C*).
Pf.  (by contradiction)  Assume r(C*) < ½ r(C).
n For each site ci in C, consider ball of radius ½ r(C) around it.
n Exactly one ci* in each ball; let ci be the site paired with ci*.
n Consider any site s and its closest center ci* in C*.
n dist(s, C)    dist(s, ci)    dist(s, ci*) + dist(ci*, ci)    2r(C*).
n Thus r(C)    2r(C*).   ▪

C*
sites

½ r(C)

ci

ci*s

  r(C*) since ci* is closest center

½ r(C)

½ r(C)

-inequality
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Center Selection

Theorem.  Greedy algorithm is a 2-approximation for center selection 
problem.

Question.  Is there hope of a 3/2-approximation? 4/3? 

Theorem.  Unless P = NP, there no -approximation for center-selection
problem for any  < 2.



11.4  The Pricing Method:  Vertex Cover
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Weighted Vertex Cover

Weighted vertex cover.  Given a graph G with vertex weights, find a 
vertex cover of minimum weight.

4

9

2

2

weight = 2 + 2 + 4
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Weighted Vertex Cover

Pricing method.  Each edge must be covered by some vertex i.  Edge e 
pays price pe  0 to use vertex i.

Fairness.  Edges incident to vertex i should pay  wi in total.

Lemma.  For any vertex cover S and any fair prices pe:  e pe    w(S). 

Proof.    ▪

4

9

2

2

i
jie

e wpi 
 ),(

:x each vertefor 

).(
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i
jie

e
SiEe

e  


sum fairness inequalities
for each node in S

each edge e covered by
at least one node in S
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Pricing Method

Pricing method.  Set prices and find vertex cover simultaneously.
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Pricing Method

vertex weight

Figure 11.8

price of edge a-b
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Pricing Method:  Analysis

Theorem.  Pricing method is a 2-approximation.
Pf.  
n Algorithm terminates since at least one new node becomes tight 

after each iteration of while loop.

n Let S = set of all tight nodes upon termination of algorithm. S is a 
vertex cover:  if some edge i-j is uncovered, then neither i nor j is 
tight. But then while loop would not terminate.

n Let S* be optimal vertex cover. We show w(S)  2w(S*).



w(S)  wi
i S
 

i S
 pe

e(i, j)
 

iV
 pe

e(i, j)
  2 pe

e E
  2w(S*).

all nodes in S are tight S  V,
prices  0

fairness lemmaeach edge counted twice



11.6  LP Rounding: Vertex Cover
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Weighted Vertex Cover

Weighted vertex cover.  Given an undirected graph G = (V, E) with 
vertex weights wi  0, find a minimum weight subset of nodes S such 
that every edge is incident to at least one vertex in S.

3

6

10

7

A

E

H

B

D I

C

F

J

G

6

16

10

7

23

9

10

9

33

total weight = 55

32
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Weighted Vertex Cover:  IP Formulation

Weighted vertex cover.  Given an undirected graph G = (V, E) with 
vertex weights wi  0, find a minimum weight subset of nodes S such 
that every edge is incident to at least one vertex in S.

Integer programming formulation.
n Model inclusion of each vertex i using a 0/1 variable xi.

Vertex covers in 1-1 correspondence with 0/1 assignments:
 S = {i  V : xi = 1} 

n Objective function:  minimize i wi xi. 

n If (i,j)∈E, must take either i or j:  xi + xj   1.



xi    
 0 if vertex i is not in vertex cover
 1 if vertex i is in vertex cover
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Weighted Vertex Cover:  IP Formulation

Weighted vertex cover.  Integer programming formulation.

Observation.  If x* is optimal solution to (ILP), then S = {i  V : x*i = 1} 
is a min weight vertex cover.

  



( ILP) min  wi xi
i    V


s. t. xi  x j  1 (i, j) E
xi  {0,1} i V
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Linear Programming

Linear programming.  Max/min linear objective function subject to 
linear inequalities.
n Input:  integers cj, bi, aij .
n Output:  real numbers xj.

Simplex algorithm.  [Dantzig 1947]  Can solve LP in practice.
Ellipsoid algorithm.  [Khachian 1979]  Can solve LP in poly-time.
Interior Point Method.  [Karmarkar 1984]  Can solve LP in poly-time and 
in practice.



(P) max c j x j
j1

n


s. t. aij x j
j1

n
  bi 1 i  m

x j  0 1 j  n
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Weighted Vertex Cover:  LP Relaxation

Weighted vertex cover.  Linear programming formulation.

Observation.  Optimal value of (LP) is    optimal value of (ILP).
Pf.  LP has fewer constraints. 

Note.  LP is not equivalent to vertex cover. 

Q.  How can solving LP help us find a small vertex cover?
A.  Solve LP and round fractional values.

  



(LP) min  wi xi
i    V


s. t. xi  x j  1 (i, j) E
xi  0 i V

½½

½



33

Weighted Vertex Cover

Theorem.  If x* is optimal solution to (LP), then S = {i  V  : x*i  ½} is a 
vertex cover whose weight is at most twice the min possible weight.

Pf.  [S is a vertex cover]
n Consider an edge (i, j)  E.
n Since x*i + x*j    1, either x*i  ½ or  x*j  ½     (i, j) covered.

Pf.  [S has desired cost]
n Let S* be optimal vertex cover. Then

LP is a relaxation x*i    ½
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Weighted Vertex Cover

Theorem.  2-approximation algorithm for weighted vertex cover.

Theorem.  [Dinur-Safra 2001]  If P  NP, then no -approximation
for  < 1.3607, even with unit weights.   

Open research problem.   Close the gap.

10 5  - 21



11.8  Knapsack Problem
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Polynomial Time Approximation Scheme

PTAS.  (1 + )-approximation algorithm for any constant  > 0. 

Consequence.  PTAS produces arbitrarily high quality solution, but trades 
off accuracy for time. 

This section.  PTAS for knapsack problem via rounding and scaling.
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Knapsack Problem

Knapsack problem.
n Given n objects and a "knapsack."
n Item i has value vi  > 0 and weighs wi > 0.
n Knapsack can carry weight up to W.
n Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.
1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2
W = 11

we'll assume wi  W 
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Knapsack is NP-Complete

KNAPSACK:  Given a finite set X, positive weights wi, positive values vi, a 
weight limit W, and a target value V, is there a subset S   X such that:

SUBSET-SUM:  Given a finite set X, positive values ui, and an integer U, is 
there a subset S   X whose elements sum to exactly U?

Claim.  SUBSET-SUM  P KNAPSACK.
Pf.  Given instance (u1, …, un, U) of SUBSET-SUM, create KNAPSACK 
instance:

  



wi
iS
  W

vi
iS
  V



vi  wi  ui   ui
iS
  U

V W U ui
iS
  U
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Knapsack Problem:  Dynamic Programming 1

Def.  OPT(i, w) = max value subset of items  1,..., i with weight limit w.
n Case 1:  OPT does not select item i.

– OPT selects best of 1, …, i–1 using up to weight limit w
n Case 2:  OPT selects item i.

– new weight limit = w – wi
– OPT selects best of 1, …, i–1 using up to weight limit w – wi

Running time.  O(n W).
n W = weight limit.
n Not polynomial in input size!

  



OPT(i, w) 
0 if  i  0

OPT(i 1, w) if  wi  w
max OPT(i 1, w), vi  OPT(i 1, wwi )  otherwise
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Knapsack Problem:  Dynamic Programming II

Def.  OPT(i, v) = min weight subset of items 1, …, i that yields value 
exactly v.
n Case 1:  OPT does not select item i.

– OPT selects best of 1, …, i-1 that achieves exactly value v
n Case 2:  OPT selects item i.

– consumes weight wi, new value needed = v – vi
– OPT selects best of 1, …, i-1 that achieves exactly value v

Running time.  O(n V*) = O(n2 vmax).
n V* = optimal value = maximum v such that OPT(n, v)  W.
n Not polynomial in input size!



OPT (i, v) 

0 if  v  0
 if  i  0, v > 0
OPT (i 1, v) if  vi  v
min OPT (i 1, v), wi  OPT (i 1, v vi )  otherwise










V*  n vmax
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Knapsack:  FPTAS

Intuition for approximation algorithm.
n Round all values up to lie in smaller range.
n Run dynamic programming algorithm on rounded instance.
n Return the best of  optimal items in rounded instance and the item 

with largest value. 

Item Value Weight

1 134,221 1

2 656,342 2

3 1,810,013 5

4 22,217,800 6

5 28,343,199 7

W = 11

Item Value Weight

1 2 1

2 7 2

3 19 5

4 23 6

5 29 7

original instance rounded instance

W = 11
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:  

– vmax = largest value in original instance
–      = precision parameter
–      =  scaling factor =  vmax / n

Observation.  Optimal solution to problems with     or     are equivalent.

Intuition.     close to v so optimal solution using    is nearly optimal;
    small and integral so dynamic programming algorithm is fast.

Running time.  O(n3 / ). 
n Dynamic program II running time is                ,  where



v i 
vi







 , ˆ v i  vi








  



ˆ v   



v 

  



v   



v 
  



ˆ v 

  



O(n2 ˆ v max)



ˆ v max   vmax








   n
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:  

Theorem.  If S is solution found by our algorithm and S* is any other 
feasible solution then

Pf.  Let S* be any feasible solution satisfying weight constraint. 



vi
i  S*
  v i

i  S*


 v i
i  S


 (vi
i  S
  )

 vi
i S
   n

 (1) vi
i S


always round up

solve rounded instance optimally

never round up by more than 

  



(1) vi    vi
i  S*


i S


|S|  n

n  =  vmax,  vmax  iS vi

DP alg can take vmax



v i 
vi







 


