Chapter 11

Approximation
Algorithms

% I ,\ mgﬂﬂh ”HS\H

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wa yne
FyT Copyright @ 2005 Pearson-Addison Wesley.
~ Wesley All rights reserved.

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should T do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
. Solve problem to optimality.
. Solve problem in poly-time.
. Solve arbitrary instances of the problem.

p-approximation algorithm.
. Guaranteed to run in poly-time.
. Guaranteed to solve arbitrary instance of the problem
. Guaranteed to find solution within ratio p of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without
even knowing what optimum value is!

11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time t;.
. Job j must run contiguously on one machine.
. A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The
load of machine iisL;=ZX; 54 1;

Def. The makespan is the maximum load on any machine L = max; L;.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.
. Consider n jobs in some fixed order.
. Assign job j fo machine whose load is smallest so far.

LIST — SCHEDULING(m, n, ti, to, -+ , 1)
1: fori=1tomdo
L,‘ «—0
J(i) < 0
end for
forj=1tondo
I = argminy Ly
J(i) « J(i) U j
Li < Li+ 1t
end for
return J(1),---,J(m).

i o M e o B P

—h
N

Implementation. O(n log m).

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
. First worst-case analysis of an approximation algorithm.
. Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* > max; t;.
Pf. Some machine must process the most time-consuming job. =

Lemma 2. The optimal makespan L* > .3 ¢;.
Pf.
- The total processing time is Z;1;.

. One of m machines must do at least a 1/m fraction of total work. =

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
. Let j be last job scheduled on machine i.
. When job j assigned to machine i, i had smallest load. Its load
before assignmentisLi-t; = Lj-1; < Ly foralll<k<m.

blue jobs scheduled before j

|

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
. Let j be last job scheduled on machine i.
. When job j assigned to machine i, i had smallest load. Its load
before assignmentisLi-t; = Lj-1; < Ly foralll<k<m.
. Sum inequalities over all k and divide by m:

2 Ly
2 b
L*

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

list scheduling makespan = 19

Load Balancing: List Scheduling Analysis

Q. Isour analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

optimal makespan = 10

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT(ma na t'la t29' wa atn)

1: Sortjobssothatt; >t >--- > 1y
2: fori=1to mdo

L,‘<—0

J(i) < 0

. end for
- forj=1tondo
I = argming Ly
J(i) « J(i)U |
Li — L+ fj
10: end for
11: return J(1),---,J(m).

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine.

Lemma 3. If there are more than m jobs, L* > 2 1,,.,.
Pf.
. Consider first m+1 jobs 1y, ..., tp.1.
. Since the t;'s are in descending order, each takes at least t,,.; time.
. There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs. =

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

Lemma 3
(by observation, can assume number of jobs>m)

Load Balancing: LPT Rule

Q. Isour 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1 and
one job of length m.

11.2 Center Selection

Center Selection Problem

Input. Set of nsites sy, ..., sp.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

@ center
W Site

Center Selection Problem

Input. Set of nsites sy, ..., s,.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
. dist(x, y) = distance between x and y.
. dist(s;, C) = min_._ . dist(s;, ¢) = distance from s; to closest center.
. r(C) = max; dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to [C| = k.

Distance function properties.
. dist(x, x)= 0 (identity)
. dist(x, y) = dist(y, x) (symmetry)
. dist(x, y) < dist(x, z) + dist(z, y) (triangle inequality)

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the
covering radius each time by as much as possible.

Remark: arbitrarily bad!

greedy center 1

@ center
k = 2 centers B site

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from anv existina center.

GREEDY — CENTER — SELECTION(k,n, sy, S5, - , Sp)
1: C « 0.
. fori= 110 k do
Select a site s; with maximum distance dist(s;, C)

- end for

2

3

4: C« CUsS;j
5

6: return C

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < 3 r(C).

. For each site c; in C, consider ball of radius % r(C) around it.

. Exactly one ¢;* in each ball; let ¢; be the site paired with ¢;*.

. Consider any site s and its closest center ¢* in C*.

. dist(s, C) < dist(s, ¢;) < dist(s, ¢*) + dist(¢c;*, ¢;) < 2r(C*).

. Thus r(C) < 2r(C*). = \ N

A-inequality < r(C*) since ¢;* is closest center

e C*
m sites

Center Selection

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

114 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

o ®

weight = 2 + 2 + 4

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e
pays price p, > 0 to use vertex i.

Fairness. Edges incident to vertex i should pay < w; in total.

@) O

for each vertexi: > p, <w,
e=(1,])

@ ©

Lemma. For any vertex cover S and any fair prices p.: >. p. < w(S).

Proof. .

Z:peS Z Z:peS sz:W(S)

eckE ieS e=(i,)) ieS

T

each edge e covered by sum fairness inequalities
at least one node in S for each node in S

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

WEIGHTED — VERTEX — COVER(G, W)
1: S0
. for each e € E do
. pj < 0.
. end for

. while there exists an edge (i,j) such that neither i nor j is
tight) do

. Select such an edge e = (i,).

. Increase pg as much as possible until i or j is tight.

. end while

. S « set of all tight nodes.

. return S.

Pricing Method

b: tight c d
(b)

a: tight

b: tight c d: tight

(d)

Figure 11.8

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.
. Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

. Let S = set of all tight nodes upon termination of algorithm. S is a
vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

. Let S* be optimal vertex cover. We show w(S) < 2w(S*).

w§)= 2w, =2 2p < 2 2p =22p < 2w(S¥).

ieS ieS e=(i,j) ieV e=(ij) ec £
T T T T

all nodes in S are tight ScV, each edge counted twice fairness lemma
prices > 0

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph 6 = (V, E) with
vertex weights w; > O, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

10 (A

total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph 6 = (V, E) with
vertex weights w; > O, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

Integer programming formulation.
. Model inclusion of each vertex i using a 0O/1 variable x;.

{ 0 1if vertex i 1s not 1n vertex cover

i

1 if vertex i 1s in vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
S:{iEV:Xi:].}

. Objective function: minimize Z; w; X;.

. If (i,j)€E, must take eitherior j: x;+x; > 1.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min D, w; x;
ielV
s.t. x;+Xx;

X

Observation. If x* is optimal solution to (ILP), then S={i e V: x*; = 1}
is a min weight vertex cover.

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.
. IﬂpUT: in’reger's C; bi/ Qi -

- Output: real numbers x;.

(P) max Z}lcjxj
=

n
S. t. Zaijxj

j=1

2y

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.

Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

Interior Point Method. [Karmarkar 1984] Can solve LP in poly-time and
In practice.

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min), w,x,
ieV
s.t. X;+x;

X

1

Observation. Optimal value of (LP) is < optimal value of (ILP).
Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?
A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), then S={ieV : x*;> 3}isa
vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]
. Consider an edge (i, j) € E.
. Since x*; + x*; > 1, either x*;> 3z or x*j>3 = (i,) covered.

J

Pf. [S has desired cost]
. Let S* be optimal vertex cover. Then

ZW;EZW;XF‘::ZW;XF‘E%ZW;.

jeS* eV ieS ieS
I I

LP is a relaxation xX* > 3

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P = NP, then no p-approximation
for p < 1.3?07, even with unit weights.

105 -21

Open research problem. Close the gap.

11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. (1 + ¢)-approximation algorithm for any constant ¢ > 0.

Consequence. PTAS produces arbitrarily high quality solution, but trades
off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."
. Item i has value v; > 0 and weighs w;> 0. < we'llassume w;<W
- Knapsack can carry weight up fo W.
. Goal: fill knapsack so as to maximize total value.

Exi (3,4} has value 40.

1 1
6
18
22
28

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, positive weights w;, positive values v;, a
weight limit W, and a target value V, is there a subset S < X such that:

< W
>V

SUBSET-SUM: Given a finite set X, positive values u;, and an integer U, is
there a subset S = X whose elements sum to exactly U?

Claim. SUBSET-SUM < p KNAPSACK.
Pf. Given instance (uy, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
. Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 using up to weight limit w
. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of 1, ..., i-1 using up to weight limit w - w;

0 if i=0
OPT(i,w)=y OPT(i—1,w) if w.>w
| max{ OPT(i—1,w), v,+ OPT(i—1,w—w;)} otherwise

Running time. O(n W).
. W = weight limit.
. Not polynomial in input size!

Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value
exactly v.
. Case 1. OPT does not select item i.
- OPT selects best of 1, ..., i-1 that achieves exactly value v
. Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v,
- OPT selects best of 1, ..., i-1 that achieves exactly value v

e

0 if v=0
00 if 1i=0,v>0
OPT(i—1,v) if v,>v

| min{OPT(i-1,v), w;+ OPT(i—1,v—v;)} otherwise

OPT(i,v)=1

*
V* <N Vyox

Running time. O(n V*) = O(N2 vqy).
. V* = optimal value = maximum v such that OPT(n, v) < W.
. Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.
. Round all values up to lie in smaller range.
. Run dynamic programming algorithm on rounded instance.
- Retfurn the best of optimal items in rounded instance and the item
with largest value.

134,221 1 2 1
656,342 7
1,810,013 19

2 2
3 5
22,217,800 4 23 6
5 7

28,343,199 29

w=11

original instance rounded instance

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

- Vmax = largest value in original instance
- ¢ = precision parameter
-0 = scaling factor = ¢ Ve /' N

Observation. Optimal solution to problems with V or V are equivalent.

Intuition. V close to v so optimal solution using Vis nearly optimal;
V small and integral so dynamic programming algorithm is fast.

Running time. O(n3/ ¢).
. Dynamic program II running time is O(n° v,), where

~ .)2

max

0

n
€

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

Theorem. If S is solution found by our algorithm and S* is any other

feasible solution then (1+&)> v, > Y v
ieS i e S*

Pf. Let S* be any feasible solution satisfying weight constraint.

— always round up
2 Vv, < 2V

ie S* ie S*

S v solve rounded instance optimally
i

ieS
> (v.+ 0) never round up by more than 6
1
ieS

<
> v, + nb S| <n

ieS DP alg can take Vg

l

(1 +8) z Vi N0 = €Vmax, Vimax < Zics Vi
ieS

