

有限元分析的典型 Project

【应用建模 Project5】传热分析:钢制圆柱冷却过程温度场的瞬态分析

如图 5.1 所示,直径为 30mm、高度为 60mm 的钢制实心圆柱。圆柱的初始温度为 T₀=600℃, 为均匀分布,对该物体进行热处理,即将圆柱置于温度为 T_f= 20℃、换热系数为 h = 1200 W/m²℃ 的介质中冷却。将钢材的密度设为 ρ =7840kg/m³,并忽略密度随温度的变化。这里考虑钢材的热 传导系数随温度变化的情况,在 0 至 600℃范围内,k = 45 – 0.03T (W/m℃);比热也随温度变 化,在 0 至 600℃范围内, C_p = 550 + 0.147T (J/kg℃)。计算圆柱冷却过程的温度分布及温度随 时间的变化,冷却时间为 100 秒。

图 5.1 钢制圆柱的单元划分

【建模要点】

●根据热传导的对称性,此问题可以作为轴对称问题进行分析,取圆柱纵截面的 1/4 作为计算模型,见图 5.1。在圆柱的外侧面和上端面存在对流换热。建立几何模型时长度单位取 mm,统一物理量的单位,导热系数的单位取 W/mm℃,密度的取 kg/mm³,换热系数的单位取 W/mm²℃。

●在 ANSYS 环境中,采用传热单元,输入材料参数。设置材料导热系数和热容随温度线性变化。●用 ANSYS 提供的面积元素生成圆柱的 1/4 截面,再划分单元网格。

●设定为瞬态计算<ANTYPE,TRANS>,通过命令<TUNIF>使得初始温度,在圆柱的侧面和端面 上定义对流换热边界条件,通过命令<TIME>设定瞬态过程的计算时间。

●在一般后处理</POST1>中,通过命令</EXPAND>进行对称映射显示设置,以云纹图或等值线 方式显示温度分布,以矢量图方式显示热流分布.在时间后处理</POST26>中,通过命令<NSOL> 设置圆柱中心、侧表面中间、端面与侧表面交界处等位置节点上温度变量随时间的变化,在通过 命令<PLVAR>显示温度变量的曲线。

解答:以下为基于 ANSYS 图形界面(GUI)的菜单操作流程;注意:符号"→"表示针对菜单中选 项的鼠标点击操作。

1 基于图形界面的交互式操作(step by step)

(1) 进入 ANSYS

程序 → ANSYS → ANSYS Product Launcher → File Management, Working Directory: D:\analysis (设定工作目录)(Browse), Job Name: thermal (设定工作文件) → Run

(2)设置不显示日期和时间

Utility Menu: PlotCtrls \rightarrow Window Controls \rightarrow Window Options \rightarrow DATE DATE/TIME display:<u>NO DATE or TIME</u> \rightarrow OK

(3) 设置计算类型

Step1 设定热分析

ANSYS Main Menu: Preferences... \rightarrow Thermal \rightarrow OK

Step2 设定瞬态分析

ANSYS Main Menu: Solution \rightarrow Analysis Type \rightarrow New Analysis: <u>Transient</u> \rightarrow OK

(4) 选择单元类型

Main Menu: Preprocessor \rightarrow Element Type \rightarrow Add/Edit/Delete \rightarrow Defined \rightarrow Add \rightarrow Library of Types: <u>Thermal Solid</u>, <u>Quad 8node 77</u> \rightarrow OK \rightarrow close

(5) 定义材料参数

Step1 定义材料导热系数

Main Menu: Preprocessor \rightarrow Material Props \rightarrow Material Models \rightarrow Material Models Available: Thermal(双击打开子菜单) \rightarrow Conductivity(双击) \rightarrow Isotropic(双击) \rightarrow Add Temperature \rightarrow T1: Temperature: <u>0</u>;KXX: <u>0.045</u>, T2: Temperature: <u>600</u>;KXX: <u>0.027</u> \rightarrow OK \rightarrow 关闭材料定义菜单(点击菜单的右上角 X)

Step2 定义材料密度

Main Menu: Preprocessor → Material Props → Material Models → Material Models Available → Thermal (双击打开子菜单) → Density (双击) → DENS: <u>7.84e-6</u> → OK → 关闭材料定义菜单 (点击菜单的右上角 X)

Step3 定义材料热容

Main Menu: Preprocessor \rightarrow Material Props \rightarrow Material Models \rightarrow Material Models Available \rightarrow Thermal (双击打开子菜单 \rightarrow Specific Heat (双击) \rightarrow Add Temperature \rightarrow T1: Temperature: <u>0</u>; C: <u>550</u>, T2: Temperature: <u>600</u>; C: <u>638.2</u> \rightarrow OK \rightarrow 关闭材料定义菜单(点击菜单的右上角 X)

(6) 生成几何模型

Main Menu: Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Areas \rightarrow Rectangle \rightarrow By Dimensions \rightarrow X1:0, X2:15 \rightarrow Y1:0, Y2:30 \rightarrow OK

(7) 划分单元网格

Step1 设置单元长度

Main Menu: Preprocessor \rightarrow Meshing \rightarrow Size Cntrls \rightarrow ManualSize \rightarrow Areas \rightarrow pick all \rightarrow OK \rightarrow Element edge length: <u>1.5</u> \rightarrow OK

Step2 划分单元

Main Menu: Preprocessor \rightarrow Meshing \rightarrow Mesh \rightarrow Areas \rightarrow Free \rightarrow pick all \rightarrow OK

(8) 对模型定义换热边界条件

Main Menu: Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Thermal \rightarrow Convection \rightarrow On Lines \rightarrow 鼠标左键选中最上面和右面两条边 \rightarrow OK \rightarrow VALI, Film coefficient: <u>1.2e-3</u>, VAL2I, Bulk temperature: <u>20</u> \rightarrow OK

(9)对模型定义初始温度

Main Menu: Preprocessor \rightarrow Loads \rightarrow define loads \rightarrow apply \rightarrow thermal \rightarrow temperature \rightarrow uniform temp: <u>600</u>

(10) 分析计算

Step1 设定总求解时间,设定计算子步数目

Main Menu: solution \rightarrow load step opts \rightarrow time/frequenc \rightarrow time-time step \rightarrow Time: <u>100</u>. Time Step Size: <u>40</u>, Minimum Time Step Size: <u>20</u>, Maximum Time Step Size: <u>40</u> \rightarrow OK

Step2 设定计算结果的保存方式

Main menu: solution \rightarrow load step opts \rightarrow output ctrls \rightarrow db/results file : <u>Every substep</u> \rightarrow OK

Step3 分析计算

Main Menu: Solution → Solve → Current LS → (弾出一个对话框) OK → (求解完成后,弾出一个对话框) Solution is done! Close → (关闭信息文件右上角的 X) / STATUS Command

(11) 显示在某一时刻的温度分布

Step 1: 进行节点温度的显示

Main Menu: General Postproc \rightarrow Plot Results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow DOF Solution, Nodal Temperature \rightarrow OK

Step 2: 进行对称性显示

Utility Menu: PlotCtrls \rightarrow Style \rightarrow Symmetry Expansion \rightarrow Periodic/Cyclic Symmetry \rightarrow 1/4 Dihedral Sym \rightarrow OK

Step 3: 显示热流矢量分布

Main Menu \rightarrow General Postproc \rightarrow Plot Results \rightarrow Vector Plot \rightarrow Predefined \rightarrow Flux & gradient, Thermal flux TF \rightarrow OK

(12) 进入时序后处理模块显示某个结点的温度随时间的变化过程

Step1: 把需要显示的结点数据定义为变量

Main Menu: TimeHist Postpro → Define Variables → Add → Nodal DOF Result → OK → 选择圆柱中心点(节 点 1) → OK→ NVAR:2,NODE:1 → OK → Add → Nodal DOF Result → OK → 选择圆柱侧面中间点(节点 2) → OK→ NVAR:3,NODE:2 → OK → Add → Nodal DOF Result → OK → 选择圆柱侧面与端面交界点(节点 22) → OK→ NVAR:4,NODE:22 → OK → Close

Step2: 把变量的时间历程以曲线的形式画出

Main Menu: TimeHist Postpro \rightarrow Graph Variables \rightarrow 2,3,4 \rightarrow Apply

(13) 退出系统

ANSYS Utility Menu: File \rightarrow Exit... \rightarrow Save Everything \rightarrow OK

计算得到的截面温度以及热流分布见图 6-13,关键点的温度变量随时间的变化曲线见图 6-14。

(a) 截面温度分布

图 6-13 冷却 100 秒时的截面温度分布(经两次对称显示)

图 6-14 节点 1、2、22 温度随时间的变化曲线

2 完整的命令流

以下为命令流语句;注意:以"!"打头的文字为注释内容,其后的文字和符号不起运行作用。 !%%%%%%%% [应用建模 Project5] %%%% begin %%%%%%

/PREP7	!进入前处理模块
/PLOPTS,DATE,0	!设置不显示日期和时间
!====设置参数	
DIA=30	!设定圆柱的直径
HT=60	!设定圆柱的高度
!====设置单元、材料,生成节点及单元	
ET,1,PLANE77,,,1	!选择平面传热单元,设为轴对称
MP,DENS,1,7.84e-6	!设定材料的密度
MP,KXX,1,0.045,-0.3e-4	!把材料的导热系数设定为温度的线性函数
MP,C,1,550,0.147	!把材料的比热设定为温度的线性函数
RECTNG,0,DIA/2,0,HT/2	!用矩形面积元素创建圆柱的 1/4 纵截面
AESIZE,1,1.5	!设定单元尺寸
AMESH,1	!划分单元网格
EPLOT	!显示单元网格
FINISH	!退出前处理模块
!====在求解模块中,设置瞬态分析	,施加传热边界条件,进行求解
/SOLU	!进入求解模块
ANTYPE, TRANS	!把计算类型设置为瞬态分析
TUNIF,600	!设定圆柱的初始温度
LSEL,S,,,2,3	!选中换热边界
SFL,ALL,CONV,1.2e-3,,20	!设定换热边界条件
TIME,100	! 设定总计算时间为 100 秒
NSUBST,40,40,20	!设置计算子步的数目
OUTRES,,ALL	!设置计算结果输出方式
ALLSEL,ALL	!选中全部实体
SOLVE	! 求解
FINISH	!退出求解模块
!====进入一般的后处理模块,显示温度分布	
/POST1	!进入通用后处理模块
PLNSOL, TEMP	!显示最后一个计算子步对应的温度分布

/EXPAND,4,POLAR,HALF,,90	!进行对称映射设置	
/REPLOT	!再进行显示	
PLVECT,TF, , , , VECT,ELEM,ON,0	! 以矢量图方式显示热流分布	
FINISH	!退出通用后处理模块	
!====进入时间后处理模块,显示变量随时间变化的过程		
/POST26	!进入时序后处理模块	
NSOL,2,1,TEMP	!把节点1(圆柱中心)的温度保存到变量2	
NSOL,3,2,TEMP	!把节点2(圆柱侧面中间)的温度保存到变量3	
NSOL,4,22,TEMP	!把节点 22(圆柱侧面与端面交界)的温度保存到变量 4	
PLVAR,2,3,4	!用图形方式显示三个位置的温度变化	
!%%%%%%%% [应用建模 Project5] %%%% end %%%%%%%%		