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Abstract

The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly.
Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the
mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are
described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not
usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the
m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5′ end of the mRNA; and (iv) secondary
structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism
also explains how small open reading frames near the 5′ end of the mRNA can down-regulate translation. This constraint is sometimes abrogated
by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of
translation that have found their way into textbooks are pointed out and corrected.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This review focuses on the initiation phase of protein
synthesis—in particular, on regulatory mechanisms built into
the structure of the mRNA.

Initiation of translation in prokaryotes is mediated by three
protein factors, designated IF1, IF2 and IF3. Eukaryotic
initiation factors are more numerous (eIF1, eIF1A, eIF2, eIF2B,
eIF3, eIF4A, eIF4E, eIF4G, eIF5, eIF5B) and some of these
play important regulatory roles (Harding et al., 2001; van der
Knaap et al., 2002). One essay cannot cover everything,
however, and the initiation factors will be discussed herein only
incidentally. Other reviews do an adequate job of explaining the
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functions of these proteins (Dever, 2002; Kapp and Lorsch,
2004; Laursen et al., 2005; von der Haar et al., 2004).

Other reviews might be consulted also regarding some
important emerging stories, such as temporal control of
translation during embryonic development (Kuersten and
Goodwin, 2003), translation-linked degradation of defective
mRNAs (Baker and Parker, 2004), and regulation of translation
by microRNAs (Bartel, 2004; Yang et al., 2005). Here, I have
focused on mechanisms that are more fully defined.

Regulation of translation is not limited to the initiation step,
of course. At the level of elongation, the most common
regulatory device involves frameshifting (Márquez et al., 2004;
Matsufuji et al., 1995; Namy et al., 2004). Other interesting
regulatory mechanisms are built around the pausing of
ribosomes at a particular point in elongation (Chartrand et al.,
2002; Mason et al., 2000; Murakami et al., 2004; Rüegsegger et
al., 2001; Snyder et al., 2003).

With those acknowledgments concerning what the review
omits, here is a preview of what it includes. Section 2 discusses
aspects of prokaryotic mRNA structure that are important for
initiation in general. Section 3 describes specific examples of
translational regulation in bacteria and bacteriophage. The unit



1 Feltens et al. (2003) describe an unusual case in which a single SD
(GGAGG) precedes two functional AUG codons. The sequence is cagG-
GAGGgagAUGgAUG, wherein the first AUG initiates RNase P and the second
AUG initiates ribosomal protein L34. The postulated dual use of an SD is not
certain, however, as an upstream AGG sequence (underlined) is better
positioned to function as the SD for the first AUG. Thus, the hypothesis
requires testing. Another deviation-from-the-norm was postulated for ribosomal
protein S1 mRNA (Boni et al., 2001). Here, an SD located far upstream is
supposedly brought close to the AUG codon by an array of hairpin structures.
The authors invoke phylogenetic conservation as evidence for the model, but in
some species the predicted hairpins are very weak (mostly A–U and G–U base
pairs). The model was actually tested only with E. coli S1 mRNA, where some
but not all mutations produced the expected effects.
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on eukaryotes begins with an overview of mRNA structures
relevant to initiation (Section 4), followed by examples of
regulation via reinitiation (Section 5) and mRNA binding
proteins (Section 6). Section 7 addresses some common questions
and misunderstandings about initiation of translation in eu-
karyotes. Section 8 traces some of the misunderstandings to
recurrent problems in the design and execution of experiments.

2. Structural elements in prokaryotic mRNAs that control
initiation of translation

mRNA sequences are numbered by designating the A of the
AUG codon as +1. The preceding base is position −1 and
negative numbering proceeds upstream.

2.1. AUG (or other) start codon

Selection of the AUG or alternative start codon by the 30S
ribosomal subunit sets the reading frame for the rest of the
translation process. AUG is recognized via pairing with the
anticodon (3′-UAC-5′) in fMet-tRNA (Mayer et al., 2003).
Structural analyses of initiation complexes help to explain
why other tRNAs cannot be used in this step (Allen et al.,
2005).

Weaker pairing (two rather than three base pairs) with fMet-
tRNA is part of the reason that translation is less efficient when
an alternative start codon replaces AUG. In one study,
translation was reduced ∼8-fold when AUG was replaced by
GUG or UUG (Sussman et al., 1996, Table 3). Notwithstanding
this reduction in efficiency, 14% of Escherichia coli genes use
GUG as the start codon and another 3% use UUG (Blattner et
al., 1997). Use of UUG as a start codon is more common in
Gram-positive bacteria and some bacteriophage (Kunst et al.,
1997;Łobocka et al., 2004).

AUU functions even less efficiently than UUG in
experimental tests (Sussman et al., 1996), and AUU is the
natural start codon in only two E. coli genes. One of these
encodes a potentially toxic protein, which explains why
translation must be restrained (Binns and Masters, 2002). The
other encodes initiation factor IF3. This factor has the
interesting function of proofreading initiation complexes; i.e.
IF3 disfavors initiation at nonstandard start codons, as
evidenced by increased initiation at AUU, AUA and CUG
codons when IF3 is mutated (O'Connor et al., 2001; Sussman et
al., 1996). This leads to the prediction that IF3 mRNA should be
translated better when IF3 protein levels are low, which is
indeed the case (Butler et al., 1987). Evolutionary conservation
of this autoregulatory mechanism underscores its importance
(Hu et al., 1993). In addition to functioning as a fidelity factor
for selection of the start codon, IF3 also promotes dissociation
of 70S ribosomes, generating the pool of free 30S subunits
required for initiation.

2.2. SD element and nearby sequences

The RNA component (16S rRNA) in the 30S ribosomal
subunit plays a major role in selecting the translational start site.
Authentic start codons are preceded by a purine-rich sequence
which is complementary to, and base pairs with, a sequence
near the 3′ end of 16S rRNA (Jacob et al., 1987; Steitz and
Jakes, 1975). This so-called Shine–Dalgarno (SD) sequence in
mRNA is typically 4 or 5 nt in length. (It can be as long as 8 nt
or as short as 3 nt, if two of the three base pairs are G–C. The
mRNA/rRNA complementarity must not be interrupted by
unpaired bases.) An exhaustive analysis of E. coli genes
documents the existence of an SD sequence in all but a few
exceptional cases (Shultzaberger et al., 2001).

The SD is usually positioned some 5–8 nt upstream from the
start codon.1 The optimal spacing depends on exactly which
bases at the 3′ end of 16S rRNA (3′-AUUCCUCCAC…5′)
participate in the interaction (Chen et al., 1994a). Spacing is
clearly important, as evidenced by cases in which unused AUG
codons occur between the SD and the actual start codon. The
spacing requirement can be rationalized by structural models of
the ribosome which show the P site, where AUG binds, on the
interface side of the 30S subunit while the “anti-SD sequence”
in 16S rRNA is around the corner, on the solvent side
(Yusupova et al., 2001).

In most mRNAs, the standard 4 or 5 base pair SD interaction
is strong enough to mediate efficient translation. Thus,
experimentally lengthening the SD sometimes produces no
increase in translation (Munson et al., 1984) or only a modest
increase (Chen et al., 1994b, construct IF6) or even
a diminishment (de Smit and van Duin, 1994a; Komarova et al.,
2002). A stronger-than-normal SD interaction does help,
however, when the start codon is not AUG (Weyens et al., 1988)
or when the initiation site is masked by secondary structure (de
Smit and van Duin, 1994a; Munson et al., 1984). On the latter
point, the clearest evidence comes from an evolutionary study
with coliphage MS2 in which expansion or abbreviation of the
SD provoked compensatory changes in the strength of a hairpin
structure that encompasses the ribosome binding site (Olsthoorn
et al., 1995).

Whereas the presence of secondary structure within the
initiation region can be offset by a stronger-than-normal SD
sequence, an A/U-rich initiation site that forms no stable
secondary structure might require no SD interaction at all
(Fargo et al., 1998). Thus, an A-rich, G-poor leader sequence
derived from tobacco mosaic virus (TMV) which augments
initiation when transposed to bacterial mRNAs (Gallie and
Kado, 1989) might do nothing more than preclude secondary
structure. The unusually weak SD in ribosomal protein S1
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mRNA might suffice because the A/U-richness of the initiation
site allows only weak secondary structures to form. (A far-
upstream hairpin in S1 mRNA which appears to augment
translation might do so simply by directing secondary structure
away from the initiation site, rather than via the complicated
mechanism postulated by Boni et al. (2001).)1

The ribosome binding site (RBS), defined as the segment of
mRNA protected against RNase digestion, consists of ∼15 nt
on each side of the AUG codon (Steitz and Jakes, 1975). The
RBS thus extends slightly 5′ of the SD sequence, but no
required sequence has been defined upstream of the SD. The
stimulatory effect of upstream U-rich or A-rich or A/U-rich
sequences (Olins and Rangwala, 1989; Zhang and Deutscher,
1992; Zhelyabovskaya et al., 2004) might be attributed simply
to minimizing secondary structure.2

The sequence between the SD and AUG codon also plays no
defined role. Although mutations in this domain sometimes
reduce translation of one or another mRNA (Gross et al., 1990),
efficient translation can be restored by a variety of sequences.
Again, the primary requirement might be exclusion of secondary
structure (Schauder and McCarthy, 1989), which could explain
the general A-richness of E. coli mRNAs in positions −1 to −6.

Downstream from the initiation codon, A-rich or A/U-rich
sequences probably stimulate translation by precluding
secondary structure (Chen et al., 1994b; Qing et al., 2003). The
inhibition of translation by certain G-rich codons (e.g. AGG,
CGG), however, cannot be attributed simply to augmentation of
secondary structure. The inhibition is relieved upon inserting or
deleting one base in a way that shifts the reading frame,
demonstrating that translation of these particular codons in the
vicinity of the start site is deleterious, for reasons unknown
(Gonzalez de Valdivia and Isaksson, 2004).

2.3. Polycistronic mRNA structure: coupled translation

The expression of prokaryotic genes via polycistronic
transcripts makes possible a type of regulation in which
translation of a downstream cistron is coupled to that of the
preceding cistron. This is achieved via a conformational
constraint which is relieved as ribosomes translate the upstream
cistron. In the simplest cases, movement of ribosomes through
the upstream cistron (e.g. mok in Fig. 1B) is sufficient to disrupt
the base pairing that constrains translation of the next cistron
(hok). (This example will be explained below.) A more
sophisticated control mechanism requires that ribosomes pause
at a particular point during translation of the upstream cistron
(Butkus et al., 2003; Chen and Yanofsky, 2004; Gu et al., 1994;
Mayford and Weisblum, 1989). In these examples, as in most
cases of coupled translation, the downstream cistron has
a usable RBS which is temporarily obscured by secondary
structure.
2 An alternative hypothesis is that ribosomal protein S1 interacts with these
so-called enhancer elements, thereby promoting initiation. Although S1
occupies an appropriate position on the ribosome (Sengupta et al., 2001),
other evidence undermines the hypothesis: stimulation of translation by S1 is
not mRNA-specific (Sørensen et al., 1998), and the isolated S1 protein binds
promiscuously to RNAs (McGinness and Sauer, 2004).
In rare cases, coupling allows a downstream cistron to be
translated even when it lacks a competent RBS. Ribosomes are
delivered to the downstream cistron upon completing translation
of the preceding cistron. This inefficient reinitiation mechanism
ensures that certain bacteriophage proteins, needed in only trace
amounts, are translatedat appropriately lowlevels (Adhinandvan
Duin, 1989; Inokuchi et al., 2000; Ivey-Hoyle and Steege, 1992).
The efficiency of translation increases when the downstream
cistronhasanSD,andgenes thusconfiguredenabled testingof the
hypothesis that reinitiation indeed involves retention and reuse of
ribosomes. This was done by mutating the SD sequences of the
upstream and downstream cistrons and measuring translation in
the presence of ribosomes that carry appropriate compensatory
mutations (Rex et al., 1994).

The bacterial genome does not waste space: the terminator
codon of one gene often overlaps the start codon of the next
(e.g. UGAUG ) and this proximity facilitates reinitiation of
translation (Sprengel et al., 1985).3 The expression of foreign
genes in E. coli can be augmented by copying this arrangement
(Ishida and Oshima, 2002; Schoner et al., 1986).

Coupled translation is used sometimes to coordinate gene
expression–e.g. allowing production of several ribosomal
proteins to be turned on or off via a single control point in the
mRNA (Section 3.2)–but coupling does not necessarily ensure
equimolar protein yields. On the contrary, the efficiency of
translation of downstream cistrons varies widely and is
sometimes controlled in unusual ways by the upstream cistron
(Praszkier and Pittard, 2002; Yu et al., 2001). In one case,
coupled translation has the unexpected advantage of enhancing
folding of the protein derived from the downstream cistron
(Basu et al., 2004).

2.4. Unusual mRNA structures and alternative initiation
mechanisms

Leaderless mRNAs, albeit rare, are interesting because the
SD interaction is clearly precluded when the mRNA begins
directly with the AUG codon. (AUG is the only start codon able
to function in vivo in the absence of a leader sequence; Van
Etten and Janssen, 1998.) Unlike initiation sites in the interior of
the mRNA, an AUG codon positioned exactly at the 5′ end
might be able to thread into the groove between the 30S and 50S
subunits, rationalizing the observation that a leaderless mRNA
binds more stably to 70S ribosomes than to the 30S subunit
(O'Donnell and Janssen, 2002).

A growing body of evidence indeed supports the idea that
leaderless mRNAs are translated via a novel pathway which
begins with the 70S ribosome rather thanwith a free 30S subunit.
Thiswas demonstrated in vitro, using chemically crosslinked70S
ribosomes, and in vivo via a temperature-sensitive termination
factor which promotes accumulation of 70S ribosomes (Moll et
3 Early studies with the E. coli lacI gene appeared to show reinitiation
occurring far downstream from a stop codon, but the interpretation of those
experiments was later revised (Matteson et al., 1991). A rare case involving
extensively overlapping genes, wherein the start codon of the second cistron
lies far upstream from the stop codon of the first cistron, raises interesting
mechanistic questions which require further testing. This very unusual restart
site functions very inefficiently (Adhin and van Duin, 1990).



Fig. 1. Translational control of plasmid R1 hok gene. Retention of the R1 plasmid in a bacterial population is ensured by killing plasmid-free segregants. The mRNA
that encodes the host-killing protein (Hok) is silent in plasmid-containing cells; its translation gets turned on only when the mRNA enters a daughter cell
unaccompanied by plasmid DNA. (A) Translation of hok is prevented in plasmid-containing cells via coupling to an upstream, overlapping cistron (mok). (i) mok is
untranslatable because its SD sequence (black bar) is blocked by base-pairing to a sequence near the 3′ end of the mRNA. (ii) Slow constitutive processing of the
mRNA by 3′ exonuclease exposes the mok start site which is quickly blocked by a small, plasmid-encoded antisense RNA (Sok). Sok RNA is very abundant in
plasmid-containing cells (despite its short half life) because it is transcribed from a very strong promoter. (iii) Binding of Sok RNA creates a base-paired structure
recognized by RNase III. The result is degradation of the entire mRNA. (B) In plasmid-free daughter cells, rapid decay of Sok RNA allows translation of mok. As
ribosomes advance through the mok coding domain, the base-paired structure which had prevented translation of hok is disrupted. Production of the toxic Hok protein
kills the cell. The RNA structures here depicted diagrammatically are presented in full by Franch et al. (1997) and evidence for the overall scheme is reviewed by
Gerdes et al. (1997). Recent studies explain how translation of mok/hok is prevented during transcription of the mRNA, i.e. during the interval before the
complementary element near the 3′ end of the mRNA is synthesized: the 5′ end of the nascent transcript forms a different base-paired structure which also blocks the
mok initiation region. (Møller-Jensen et al., 2001).
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al., 2004). (Control transcripts containing internal initiation sites
were not translated by 70S ribosomes in these experiments,
consistent with classic experiments wherein the free 30S subunit
was shown to be required for initiation; Guthrie and Nomura,
1968). The postulated mechanism rationalizes the effects of
initiation factors: translation of leaderless mRNAs is inhibited by
IF3, which promotes dissociation of 70S ribosomes, and
augmented by IF2, which stabilizes binding of fMet-tRNA (Grill
et al., 2000; Tedin et al., 1999).

This 70S ribosome-mediated pathway, limited to leaderless
mRNAs, is the only credible alternative to the standard SD-
mediated initiation mechanism. Other pairings between
mRNA and 16S rRNA have been postulated–e.g. to explain
the stimulatory effect of an mRNA sequence located upstream
from the SD (the so-called “epsilon” sequence; Olins and
Rangwala, 1989) or a sequence located downstream from the
AUG codon (Sprengart et al., 1996)–but these ideas were
ruled out by the lack of an effect when the complementary
rRNA sequences were mutated (O'Connor and Dahlberg,
2001; O'Connor et al., 1999).

3. Examples of translational regulation in prokaryotes

In the upcoming examples, a key point is the ease whereby
the initiation step of translation can be blocked by base-paired
structures in the mRNA. Once ribosomes enter the elongation
phase, in contrast, they have a remarkable ability to disrupt
base-pairing (Takyar et al., 2005). Structured elements in the
coding domain of an mRNA might transiently slow elongation,
but ribosomes eventually get through. This is the key to
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understanding the aforementioned coupled translation. It also
explains why biotechnologists, looking for ways to improve the
expression of foreign genes in E. coli, sometimes use the simple
trick of diverting a base-paired structure from the RBS to the
coding domain (Paulus et al., 2004; Satchidanandam and
Shivashankar, 1997).
3.1. Conformational masking of the initiation site

Translation is often regulated by base-paired structures in the
mRNA which undergo rearrangement, alternately sequestering
and exposing the RBS. Many classic examples are described in
an earlier review (de Smit and van Duin, 1990). In some
recently discovered cases, a conformational change in the
mRNA is induced by small metabolites or a change in
temperature (Chowdhury et al., 2003; Johansson et al., 2002;
Nahvi et al., 2004; Nou and Kadner, 2000; Ravnum and
Andersson, 2001; Winkler et al., 2002).4 The examples
discussed in the next few paragraphs illustrate the basic point–
that translation can be turned on and off by refolding of the
mRNA–and show how refolding is brought about by mRNA-
binding proteins, small trans-acting RNAs, or movement of the
ribosome itself.

The first example (Fig. 1) involves short-range in-
tramolecular base pairing (between hok and mok cistrons), long-
range intramolecular base pairing (between the mok initiation
site and the 3′ end of the mRNA), and intermolecular pairing
(between mok and a small antisense RNA called Sok). All these
constraints on translation are required because the protein
encoded by the hok gene is so toxic that it must be produced
only in plasmid-free segregants. The mechanism of inhibition is
unambiguous here and in other cases where an antisense RNA
binds directly across the RBS (Ma and Simons, 1990). A small
RNA that binds just upstream from the SD can also inhibit
translation (Malmgren et al., 1996).

Whereas small, plasmid-encoded antisense RNAs have
a single mRNA target (e.g. Sok regulates only mok/hok), some
small RNAs encoded on the bacterial chromosome are
multifunctional. OxyS RNA, for example, has two well-defined
targets (Altuvia et al., 1998); and DsrA RNA can potentially
regulate five mRNAs (Lease et al., 1998). The regulatory
importance of these small RNAs results from their being turned
on (at the level of transcription) in response to environmental
cues, such as low temperature or low iron levels. Some small
RNAs inhibit translation by blocking the initiation site (Altuvia
et al., 1998); others activate translation by inducing the mRNA
to refold in a way that exposes the initiation site (Repoila et al.,
2003). In many cases, the primary effect of small RNAs is on
mRNA stability rather than translation (Kawamoto et al., 2005;
Lenz et al., 2004; Vogel et al., 2004). These and other aspects of
the story are reviewed by Gottesman (2002, 2004). A helper
protein called Hfq facilitates the refolding required for the small
4 The experimental results in some of these studies are best described as
“suggestive”; additional tests are needed to confirm the interpretation.
Regulation of transcription by binding of small metabolites to mRNA is much
better documented than is regulation of translation.
RNAs to bind their mRNA targets (Lease and Woodson, 2004;
Mikulecky et al., 2004; Valentin-Hansen et al., 2004).

Other small RNAs control translation indirectly: rather
than binding to an mRNA, the small RNA binds to and
sequesters a regulatory protein. It is the protein that binds to
mRNA and directly blocks translation. Carbon storage
regulator A (CsrA) is an example of this rather unusual type
of repressor protein (Baker et al., 2002). Most repressor
proteins function without involvement of small RNAs,
however, as described next.

3.2. Repressor proteins (and more about conformational
constraints)

mRNA-specific repressor proteins usually inhibit translation
by competing with ribosomes for binding to mRNA. In most
cases, the protein binds directly across the RBS (Table 1) or
close enough to it to sterically impede ribosome entry (Jenner et
al., 2005). The mechanism is more complicated, but still
understandable, when the protein binds far upstream from the
RBS in a way that causes the mRNA to refold: the refolded
conformation sequesters the SD and blocks ribosome entry (Du
and Babitzke, 1998). There are a few cases in which, despite
binding of a repressor protein near the RBS, the ribosome can
still bind to the mRNA, but only in a nonproductive way that
does not allow fMet-tRNA to pair with the AUG codon
(Philippe et al., 1993; Schlax et al., 2001).

Most of the proteins listed in Table 1 have as their primary
function something other than regulating translation. This is
important because regulation of translation requires controlled
binding of the repressor protein, and control is sometimes
achieved via competition between the mRNA and another
substrate, such as tRNA or rRNA.

This idea underlies the remarkable feedback mechanism
whereby the production of ribosomal proteins is coordinated
with the availability of rRNA (Nomura et al., 1984; Zengel and
Lindahl, 1994). When rRNA is saturated, certain ribosomal
proteins bind to their own mRNAs and shut off further
unnecessary translation. In many but not all cases, the binding
site for the protein on mRNA resembles its binding site on rRNA
(Guillier et al., 2005; Merianos et al., 2004; Said et al., 1988;
Serganov et al., 2003). The resemblance is imperfect, however,
and the protein usually has a higher affinity for rRNA
(Nevskaya et al., 2005; Serganov et al., 2003; Wu et al., 1994).
(In cases where the protein binds mRNA and rRNAwith equal
affinity, other mechanisms–e.g. the high cooperativity of
ribosome assembly (Deckman and Draper, 1985; Robert and
Brakier-Gingras, 2001)–might explain why the protein shuts off
translation of mRNA only after all available rRNA is saturated.)
Long-distance base-pairing within the polycistronic mRNA
(Lesage et al., 1992; Petersen, 1989) probably explains how
binding of a repressor protein to one site can turn off translation
of all the downstream cistrons. Studies of ribosomal protein
synthesis in organisms other than E. coli underscore both the
importance of feedback control–the basic phenomenon is
conserved over a wide range of organisms–and its flexibility
vis-à-vis molecular details (Serganov et al., 2003).



Table 1
Translational repressor proteins in prokaryotes a

Organism Repressor protein Targeted mRNA Binding site on mRNA References

Coliphage MS2/R17 Coat protein Replicase cistron Hairpin encompasses RBS. Bernardi and Spahr, 1972;
Carey et al., 1983

T4 phage DNA polymerase
(gene 43)

Gene 43 mRNA Extends across SD
(dependent on upstream hairpin).

Pavlov and Karam, 2000

T4 phage DNA binding
protein (gene 32)

Gene 32 mRNA Begins at upstream pseudoknot
and extends across RBS.

Shamoo et al., 1993

T4 phage RegA Numerous Unstructured domain includes AUG. Brown et al., 1997
Bacillus subtilis TRAPb trpE, trpG, trpP Protein binds far upstream in trpE

mRNAwhich refolds and blocks SD;
binds directly to SD in trpG and trpP.

Du and Babitzke, 1998;
Du et al., 1997;
Yakhnin et al., 2004

Lactococcus lactis Intron-encoded
protein LtrA

LtrA Stem-loop structure includes RBS. Singh et al., 2002

E. coli CsrA c glgC, pgaA Binding site includes SD. Baker et al., 2002;
Wang et al., 2005a

E. coli Thr-tRNA synthetase thrS Binding to hairpin (just 5′ of SD)
occludes RBS.

Jenner et al., 2005

E. coli Ribosomal protein L1 L11 cistron
(in same operon as L1)

Protein binds just 5' of SD. Said et al., 1988

E. coli Ribosomal protein S7 S7 cistron Protein binds adjacent to SD. Robert and
Brakier-Gingras, 2001

E. coli Ribosomal protein S8 L5 cistron
(in same operon as S8)

Hairpin d includes AUG codon. Merianos et al., 2004

E. coli Ribosomal protein S4 e S13 cistron
(in same operon as S4)

Pseudoknot spans RBS; mRNA
refolds into inactive conformation.

Schlax et al., 2001

E. coli Ribosomal protein S15 e S15 cistron Pseudoknot spans RBS. Philippe et al., 1993

a This is not a complete list; some additional examples are mentioned in the text. The binding site for each protein was determined by mutational analysis,
biochemical tests (e.g. protection against RNase or chemical reagents), or iterative in vitro selection.
b Along with inhibiting translation, the trp RNA-binding attenuation protein (TRAP) causes attenuation of transcription of the trpEDCFBA operon in response to

changes in the intracellular concentration of tryptophan. TRAP is neutralized by interacting with another protein which is also translationally regulated (Chen and
Yanofsky, 2004).
c The function of CsrA is antagonized by small RNAs (CsrB, CsrC) which sequester the protein. CsrA affects mRNA stability as well as translation.
d The base-paired element in L5 mRNA looks strong enough to inhibit translation on its own, but it does not; repression requires binding of ribosomal protein S8.
e Ribosomal proteins S4 and S15 inhibit translation by trapping rather than competing with ribosomes; see text.
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Control of translation by repressor proteins is sometimes
regulated by, and other times works in conjunction with,
cleavage of the mRNA. In the case of the E. coli spc operon, the
repressor protein binds at the start of the third cistron, shutting
off translation of all downstream cistrons, while the two cistrons
upstream from the repressor binding site are silenced via
degradation of the 5′ fragment (Mattheakis et al., 1989).
Cleavage of coliphage λ N mRNA by RNase III, on the other
hand, is part of a mechanism for activating translation (Wilson
et al., 2002). In the uncut mRNA, N protein represses
translation by binding upstream from, but close to, the SD
sequence. Cleavage by RNase III separates the N protein
binding site from the RBS, and thus elevates translation.

Use of repressor proteins in conjunction with other
mechanisms allows fine tuning of gene expression. In the case
of coliphage MS2, a single mRNA encodes four proteins, one of
which–the major coat protein–is required in much larger
amounts than the other three. Fig. 2 outlines how repressor
proteins, conformational constraints, and coupled translation
work together to ensure that each viral protein is produced at the
correct time and in the correct amount.

The MS2 story helps us recognize the limits and
complications of regulation via base-paired structures. We know
from other examples that a remarkably small amount of base-
pairing in or near the initiation region can block translation (de
Smit and van Duin, 1994b; Hall et al., 1982). In the case of
MS2, however, the hairpin structure at the start of the R cistron
(Fig. 2C) is not stable enough on its own to block ribosome
entry (Berkhout and van Duin, 1985); only when the repressor
protein binds is translation inhibited. At the other extreme, the
base-paired structure that sequesters the M initiation site (Fig.
2B) is so stable that one might think there could be no way
around it. This complicated structure apparently folds slowly,
however; and that provides a narrow window for translation of
M protein (Poot et al., 1997). Studies with a related phage make
the additional point that competition between strong and weak
initiation sites can be a factor when translation occurs from
a polycistronic mRNA (Priano et al., 1997).

3.3. Novel regulatory mechanisms

Proteins that repress translation are more numerous and
better studied than proteins that activate translation. The BipA
protein in E. coli might be an example of the latter. Owens et al.
(2004) postulate that BipA, which displays ribosome-dependent
GTPase activity, activates the translation of an mRNA which
has a stronger-than-normal SD interaction. Some but not all of
the proffered data support this interesting hypothesis.



Fig. 2. Translation of coliphage MS2 mRNA is regulated by conformational constraints and RNA binding proteins. The single-stranded RNA genome encodes four
proteins: coat protein (CP), the major structural component; a minor capsid protein (maturase, M); RNA polymerase (replicase, R); and a small protein (L) which
promotes lysis of the host cell late in infection. Cistrons that are open for translation are shown as white blocks; those dependent on coupled translation are
crosshatched; cistrons shown in black are silent. The coupled translation is the result of base pairing between the initiation site of L or R and the CP coding domain
(Klovins et al., 1997; Licis et al., 2000). (A) (i) Infection begins with translation of mRNA released from parental virions. This brief phase ends when newly
synthesized R protein binds near the start of the CP cistron, shutting off translation of CP and all downstream cistrons. [The evidence for repression by R comes from
a related phage (Meyer et al., 1981); this point has not yet been verified for MS2.] The input mRNA next serves as template for RNA replication (not depicted), which
generates a burst of new plus-strands able to serve as mRNA. Slow folding of the 5′ end of these new transcripts provides a brief interval (ii) during which M can be
translated before base-pairing blocks access to the start codon (Poot et al., 1997). [The folded structure which eventually forms and shuts off translation of M is
depicted in (B).] (iii) Progeny mRNA primarily directs translation of CP. L is also translated, but only via an inefficient coupled mechanism which keeps the yield low
(Klovins et al., 1997). Translation of R is soon shut off by CP which, upon reaching a sufficiently high concentration, binds near the start of the R cistron in a way that
blocks ribosome entry. The binding site for the coat repressor protein is shown in (C). The net effect of these translational controls is that each protein is produced in the
required amount and at the appropriate time. Although viruses can replicate when some of these controls are lost, there is a significant reduction in efficiency (Licis et
al., 2000).
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The 5′ untranslated region (UTR) of certain mRNAs confers
preferential translation during cold shock, when bulk protein
synthesis is drastically diminished (Giuliodori et al., 2004;
Yamanaka et al., 1999). The general decrease in translation
appears to be mediated by a cold-shock induced “protein Y”
which binds the 30S ribosomal subunit in a way that blocks the
A and P sites and competes with initiation factors (Vila-Sanjurjo
et al., 2004). Whether and how protein Y might account for the
preferential translation of cold-shock mRNAs, however, awaits
investigation.

It is not out of place here tomention chloroplasts, inasmuch as
the mechanism of translation in that system is very similar to
prokaryotes. Translational regulation is thought to underlie the
interesting phenomenon wherein a block in production of one
subunit causes disappearance of all the subunits in a given
photosynthetic complex. Results described by Wostrikoff et al.
(2004), for example, can be explained by a model wherein
absence of one subunit (psaB) causes the other unassembled
subunit (psaA) to block translation of its own mRNA. The
inhibition is assumed to be at the initiation step, inasmuch as
translation of a chimeric reporter gene that carries the psaA 5′
UTRwas also blocked. Cytochrome f, which is part of a different
photosynthetic complex, also inhibits translation of its own
mRNA in the absence of its assembly partners (Choquet et al.,



Fig. 3. Some plant and animal virus mRNAs are structurally polycistronic but functionally monocistronic, underscoring the rule that initiation of translation in
eukaryotes is restricted to the 5′ end of the mRNA. Translationally silent cistrons are shown as black blocks. (A) Rous sarcoma virus genomic mRNA encodes four
proteins (Gag, Gag-Pol, Env, and Src), but only the 5′-proximal gag initiation site is accessible to ribosomes. This full-length mRNA thus produces only Gag and (via
frameshifting) Gag-Pol proteins; the downstream cistrons are silent. Translation of Env and Src occurs from spliced, subgenomic mRNAs wherein each cistron is
moved closer to the 5′ end (Pawson et al., 1977; Purchio et al., 1977; Stacey et al., 1977). In similar fashion, many other viruses use splicing to restructure mRNAs and
thus turn on translation of downstream cistrons (reviewed in Kozak, 2002a). (B) Other viruses generate the required subgenomic mRNAs via internal transcriptional
promoters. Brome mosaic virus, shown here as an example, is historically important as the system in which silent downstream cistrons were first discovered. Genomic
RNA3 is structurally dicistronic: the 5′ cistron encodes a protein required for cell to cell movement of the virus, and the 3′ cistron encodes the capsid (coat) protein. In
vitro translation of RNA3 produces only the movement protein, as the gel electrophoresis profile (blue) shows. Coat protein can be translated only from subgenomic
RNA4 (red profile). (These gel profiles are tracings of Fig. 6 in Shih and Kaesberg, 1976.) Initiation of transcription from an internal promoter (Pr′) in the negative
RNA strand generates mRNA4 (Choi et al., 2004).
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1998). Some evidence suggests the repression might be
mediated by an unidentified ternary effector rather than by direct
binding of cytochrome f to the 5′ UTR (Choquet et al., 2003).
4. Structural elements in eukaryotic mRNAs that control
initiation of translation

4.1. Preamble

Whereas co-transcription of contiguous genes in prokaryotes
produces polycistronic mRNAs, eukaryotic cellular genes are
transcribed individually, producing monocistronic mRNAs.
This fundamental difference in gene expression follows from
a fundamental difference in the mechanism of translation:
prokaryotic ribosomes can enter and initiate at multiple sites
within an mRNA, but eukaryotic ribosomes routinely enter only
at the 5′ end.

The scanning mechanism of initiation (Kozak, 2002a)
postulates that the 40S ribosomal subunit enters at the 5′ end of
the mRNA and migrates linearly until it encounters the first
AUG codon, which is recognized by base-pairing with the
anticodon in Met-tRNAi (Cigan et al., 1988a). eIF2, the factor
that escorts Met-tRNAi onto the 40S subunit, is a latent GTPase;
an associated factor (eIF5) activates GTP hydrolysis by eIF2
only when there is a sufficiently long pause in scanning. In other
words, the eIF5-mediated step is a timing device that helps to
distinguish authentic AUG start codons (long pause) from other
contenders (e.g. short pause at UUG) (Das and Maitra, 2001;
Huang et al., 1997).5 In contrast with our growing
5 eIF5 interacts also with eIF1 and eIF3, and genetic evidence suggests these
factors can influence the eIF5-mediated GTPase reaction (Valášek et al., 2004).
One possibility is that eIF1 serves as a brake on eIF5. The stop-scanning step
controlled by these factors is followed by joining of the 60S subunit, which
requires yet another protein factor (Lee et al., 2002; Shin et al., 2002).
understanding of the stop-scanning step, we know nothing
about the mechanism that actually propels the 40S subunit/
factor complex. Hints that scanning might be dependent on ATP
hydrolysis (Kozak, 1980) suggest involvement of eIF4A, the
only initiation factor that binds ATP; but this awaits verification.
No real evidence underlies the often repeated claim that eIF4A
unwinds the 5′ end of the mRNA prior to binding of the 40S
subunit; secondary structure might be disrupted only as the 40S
subunit/factor complex advances.

Initiation is not always restricted to the AUG codon nearest
the 5′ end. The scanning model specifies certain conditions–
described below under context-dependent leaky scanning
(Section 4.3) and reinitiation (Section 5)–which allow limited
escape from the first-AUG rule. In these cases, translation still
initiates at the first AUG, but not exclusively.

Some investigators believe that, contrary to the restrictions
imposed by the scanning mechanism, eukaryotic ribosomes can
enter directly at internal positions in certain mRNAs. This idea
is not discussed in detail herein because the so-called internal
ribosome entry sites (IRES) have not been defined structurally
(candidate IRES elements share no common sequence) or
mechanistically. Evidence said to support the internal initiation
hypothesis is described in other reviews (Hellen and Sarnow,
2001; Jackson and Kaminski, 1995), but serious questions have
been raised about much of this evidence (Kozak, 2001a, 2003a).

The absence of natural dicistronic mRNAs (two full-length
nonoverlapping cistrons) in eukaryotic cells is prima facie
evidence against the internal initiation hypothesis. Occasional
exceptions only underscore the rule: some viral transcripts are
structurally dicistronic but only the 5′ proximal cistron gets
translated; thus, even these mRNAs are functionally mono-
cistronic (Fig. 3). In one case where the 3′ cistron appeared to be
translated (Stacey et al., 2000), the interpretation was revised
when a second, spliced transcript was found (Zheng et al.,
2004). Other claims of dicistronic mRNAs were simply
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mistaken: the two proteins turned out to be generated by
proteolysis following translation of a single large open reading
frame (ORF) (Hänzelmann et al., 2002; Ritchie and Wang,
1997, corrected in Feng et al., 1998).6

In addition to eukaryotic mRNAs being basically mono-
cistronic, four other structural features are important vis-à-vis
initiation of translation. These are explained next. As in
prokaryotes, the eukaryotic ribosome protects ∼15 nt on each
side of the AUG codon (Kozak, 1977), but it is not appropriate
to use the term “ribosome binding site” for eukaryotes; because
of the scanning mechanism of initiation, structural elements that
affect initiation can be dispersed throughout the 5′ UTR. (The
latter term also is not appropriate, inasmuch as small ORFs
located within the 5′ “untranslated region” do get translated, as
explained in Section 5; but we are stuck with the term).

The following discussion does not include structures at the 3′
end of the mRNA. Despite abundant evidence implicating 3′
UTR elements in translational control of developmentally
regulated genes (Bashaw and Baker, 1997; Kuersten and
Goodwin, 2003; Wickens et al., 2000), the mechanisms are not
yet clear. A recent review explains why some proposed
mechanisms require rethinking (Kozak, 2004).
7 Stimulation means simply that more protein is produced because more of
the mRNA is engaged by ribosomes. It merits repeating that selection of the
correct start site (the first AUG codon) is not augmented by eIF4E, contrary to
what some textbooks say (Alberts et al., 2002). Reports of initiation occurring
at internal sites upon removal of the cap (Brown et al., 2000) are probably
attributable to partial degradation of the mRNA by 5′ exonucleases.
8 Table 3 (Kozak, 2002a) lists 33 examples with full references. In many of

these examples, operation of the leaky scanning mechanism was verified by
showing that mutations which improve the context around the first AUG codon
4.2. m7G cap

The 5′ end of all cellular and most viral mRNAs is capped
with 7-methylguanosine (Furuichi and Shatkin, 2000). Via
interaction with eIF4E (Gingras et al., 1999; von der Haar et al.,
2004), the m7G cap strongly promotes ribosome binding. This
was demonstrated directly by varying the 5′ terminal structure
on mRNAs used for in vitro translation (Both et al., 1975) and
indirectly by the inhibitory effect of soluble cap analogues
(Hickey et al., 1976). In vivo experiments confirmed
a substantial reduction in translational efficiency (≥10-fold)
when mRNAs lack the m7G cap (Horikami et al., 1984; Lo et
al., 1998).

Initiation was shown to occur exclusively at the first AUG
codon even in the absence of the cap (Kozak, 1998, Fig. 6) or in
the absence of initiation factors required for cap function (Ali et
al., 2001). These experiments underscore an important point: it
is not because of the m7G/eIF4E interaction that ribosomes
enter at the 5′ end. Rather, it is because eukaryotic ribosomes
enter at the 5′ end that the m7G/eIF4E interaction can augment
initiation. The inability of eukaryotic ribosomes to bind
a circularized mRNA (Kozak, 1979) supports the hypothesis
that entry occurs via the 5′ end.

In the aforementioned experiments, the cap might have been
dispensable because the 5′ end of the mRNAwas relatively free
of secondary structure and thus accessible to ribosomes. Most
natural mRNAs have considerable secondary structure near the
5′ end, however. For this or other reasons, the interaction
6 Even picornaviruses (e.g. poliovirus), which are deemed the prime example
of internal initiation, do not employ dicistronic mRNAs. The full set of viral
proteins is derived by proteolysis from a “polyprotein” which is translated from
a single large cistron. The IRES (if such it is) is at the 5′ end of the mRNA.
between m7G and eIF4E strongly stimulates translation of most
mRNAs.7

4.3. Context effects on recognition of AUG (or other) start
codons

The optimal context for initiation of translation in mammals
is GCCRCCaugG. In experimental tests, the biggest reduction
in efficiency was seen when the purine (R) in position −3 or the
G in position +4 was mutated (Kozak, 1986a, 1997). Thus,
initiation sites are usually designated “strong” or “weak” based
on those two positions. A start codon flanked by A −3 and G +4
can function N10-fold more efficiently than an AUG codon in
the weakest context. The GCCRCC motif augments initiation
only when it directly abuts the AUG codon (Fig. 4A, lane 4 vs.
lane 5; Kozak, 1987a).

Ribosomes will initiate at the first AUG codon to a limited
extent evenwhen the context is weak, but the poor context allows
some ribosomes to bypass the first AUG and thus reach a start
codon farther downstream. This is called leaky scanning. Fig. 4A
shows a test case wherein initiation was restricted to the first
AUG when it resided in the optimal context (lane 3), while
a weaker context allowed initiation from the first and second
AUG codons (lanes 1, 2). The leaky scanning seen when the first
AUG codon resides in a suboptimal context can be suppressed by
downstream secondary structure, as demonstrated in Fig. 4B.
Because this depends on precise positioning of the hairpin
structure (compare lanes 2, 4 and 5), a reasonable interpretation
is that the structured element slows scanning and that recognition
of a weak start codon improves when the 40S subunit pauses
with its AUG-recognition center right over the AUG codon.

When the first and second start codons are in the same
reading frame, context-dependent leaky scanning generates
long and short forms of the protein which can be targeted to
different compartments in the cell (Leissring et al., 2004; Melén
et al., 1996; Shang et al., 2001; Souciet et al., 1999). When the
first and second start codons are in different reading frames,
leaky scanning enables one mRNA to produce two completely
different proteins. Many bifunctional mRNAs that use this
mechanism have been identified in plant and animal cells and
viruses,8 and occasional examples have been found in yeast
(Outten and Culotta, 2004). (Recognition of start codons in
yeast is not sensitive to context in all cases; Cigan et al., 1988b).
reduce initiation from the second AUG. In rare cases, production of a viral
protein does not respond to changes in start codon context, apparently because
translation is limited at a step other than initiation (Fajardo and Shatkin, 1990).
Note that leaky scanning can occur, irrespective of context, when the first AUG
codon is positioned very close to the cap (Kaneda et al., 2000; Slusher et al.,
1991).



Fig. 4. Flanking sequences augment recognition of the AUG codon in eukaryotes. The autoradiograms show [35S]Met-labeled proteins synthesized in vitro from
capped mRNAs that encode chloramphenicol acetyltransferase. (A) Initiation at AUG#1 generates an N-terminally extended protein, labeled preCAT. A suboptimal
context around AUG#1 allows some ribosomes to scan past that site and initiate instead at AUG#2. This leaky scanning produces a shorter protein, labeled CAT. (B)
All mRNAs have a suboptimal context (U in position −3) around the first AUG codon and, except for the control in lane 1, a moderately stable base-paired structure
between the first and second AUGs. The only variable is the distance (n) between AUG#1 and the base of the hairpin structure. When properly positioned, the
downstream base-paired structure apparently suppresses leaky scanning (lane 4). A full description of these constructs and the adjustments required for the rabbit
reticulocyte translation system to work properly are given in Kozak (1990a,b).
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Whereas initiation at a codon other than AUG is common in
prokaryotes, use of CUG, GUG or UUG as the primary initiation
site is exceedingly rare in eukaryotes.9 These nonstandard start
codons are usually weak even when supported by the optimal
context, as shown by an increase in protein production upon
experimentally changing the codon to AUG. The weakness
explains why non-AUG codons are usually used only as
supplementary initiation sites; i.e. ribosomes initiate at an
upstream non-AUG codon in addition to initiating at the first
AUG (Carroll and Derse, 1993; Chang andWang, 2004; Fütterer
et al., 1997; Fuxe et al., 2000; Portis et al., 1994). The non-AUG
initiated protein serves a useful function in those examples; but
in some other cases, the N-terminally extended form of the
protein has no biological relevance (Miles et al., 2003).
Meaningless initiation events at upstream CUG codons might
occur by accident when scanning is slowed by a GC-rich leader
sequence.

4.4. Position determines which AUG functions as the start
codon

The strongest evidence for the scanning mechanism is the
position rule, which simply means that translation initiates at
whichever AUG codon is closest to the 5′ end. (In the following
examples, the first AUG was in a favorable context, thus
allowing an uncomplicated test.) The earliest test of the position
9 Examples and full documentation are provided in Kozak (2002a).
rule involved reiterating a block of nucleotides comprising the
AUG start codon and nearby sequences in rat preproinsulin
mRNA. Analysis of proteins produced by this mRNA in vivo
revealed that translation initiated exclusively at the first of four
tandemly repeated sequences (Kozak, 1983). An important
followup test showed that the first AUG codon was used
exclusively even when the second AUG was very close (2 or
5 nt downstream from the first AUG) and in the same favorable
context (Kozak, 1995).

Selection-based-on-position was also verified in yeast via
a clever experiment that involved changing the anticodon of
Met-tRNAi to 3′-UUC-5′, whereupon initiation shifted to an
AAG codon located upstream from the normal AUG start codon
(Cigan et al., 1988a).

In the aforementioned tests, start codons were added or
removed experimentally. When restructuring of mRNAs
happens naturally via mutations, the pattern of translation again
reveals the dominant role of position. Several examples are
described in Fig. 5. In the first two cases, the mutation
introduces an AUG codon upstream from the normal initiation
site, whereupon the new AUG takes over. In the third case,
a point mutation ablates the normal start codon, whereupon the
next downstream AUG codon which had been silent becomes
the new start site for translation. A few other naturally occurring
mutations along these lines have been described (Cai et al.,
1992; Liu et al., 1999; Mével-Ninio et al., 1996).

Elimination of the start codon via a mutation is a rare event,
but the everyday production of alternative transcripts illustrates



Fig. 5. Proximity to the 5′ end dictates which AUG functions as the start codon. White lettering indicates silent AUG codons. Only the portion of the mRNA relevant to
understanding how an AUG codon is added (A, B) or removed (C, D) is shown. The resulting shifts in initiation have clinical consequences. (A) The G→A mutation
that creates an upstream AUG codon, thereby shutting off translation of hepcidin, was found in patients with juvenile hereditary hemochromatosis (Matthes et al.,
2004). Hepcidin is an important negative regulator of iron absorption. (B) Restructuring of the c-akt gene adds an upstream in-frame AUG codon which takes over as
the initiation site, producing an N-terminally extended form of AKT. This was found in a retrovirus-induced mouse leukemia which undergoes regression due to
recognition of the novel N-terminal peptide by cytotoxic T-lymphocytes (Wada et al., 1995). (C) This point mutation causes loss of only the first four amino acids, but
the shortened polypeptide folds improperly and vasopressin is not produced (Beuret et al., 1999). (D) Activation of only the upstream promoter in colon cancer
prevents modulation of LEF1 activity, which is accomplished normally by balanced production of long and short forms of the protein (Hovanes et al., 2001).
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the same principle: when the normal AUG codon is
eliminated via a change in splicing or a switch in the
transcriptional start site, a downstream AUG which had been
silent becomes the new initiation site. Fig. 5D depicts one
example. There are many, many others.9 This is important
biologically because it enables a single gene to produce
different forms of the protein which sometimes have
complementary functions, as indicated in Fig. 5D for LEF1.
From a theoretical perspective, the need to produce a second
form of mRNA to activate an internal start codon is strong
evidence for the scanning mechanism.

The position rule asks only “which AUG is first?” The actual
distance from the 5′ end is irrelevant. The scanning mechanism
was shown to operate with no measurable reduction in
efficiency even when the first AUG codon was N1000 nt from
the 5′ end of the mRNA (Berthelot et al., 2004). Thus, it is
a mistake to think that a long leader sequence contravenes
operation of the scanning mechanism.

4.5. Base-paired structures in 5′ UTR

Although leader length per se is not a problem, scanning can
be difficult when a long leader sequence contains secondary
structure. The GC-richness of mammalian 5′ UTR sequences
predicts a considerable amount of secondary structure. Yeast
mRNAs, in contrast, have remarkably AU-rich leader sequences
(Shabalina et al., 2004).

Base-paired structures are most inhibitory when their
proximity to the 5′ end blocks ribosome entry (Goossen and
Hentze, 1992; Kozak, 1989; Wang and Wessler, 2001). Once



11 Cauliflower mosaic virus produces a transactivator protein called TAV
which is postulated to interact with eIF3, retaining the initiation factor on
ribosomes and purportedly allowing reinitiation even after translation of a full-
length cistron (Park et al., 2001). Evidence for this idea is not convincing,
however. Although TAVand eIF3b appear to co-sediment with small polysomes
in a sucrose gradient, this interpretation was not verified by showing a shift in
sedimentation of TAV/eIF3b upon disruption of polysomes. As for whether
TAV indeed enables a dicistronic mRNA to be translated by reinitiation, the
results from DNA transfection experiments are ambiguous. One study showed
strong stimulation of expression of the downstream cistron by TAV (Park et al.,
2001, Fig. 6). In another study, the efficiency of translation of the 3′ cistron was
not revealed; the yield from a particular construct in the presence of TAV was
simply called “100%” (Fütterer and Hohn, 1991, Fig. 2). In a third study–the
only one in which mRNA structure was checked–the yield of protein from the
downstream cistron in the presence of TAV was only about 5% of the yield
from a monocistronic control mRNA; and the analysis of mRNA structure was
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bound to mRNA, the scanning 40S subunit/factor complex has
some ability to disrupt base-pairing, although this has limits
(Kozak, 1986b). The bottom line is that a long 5′ UTR which
contains substantial secondary structure can greatly reduce
translational efficiency but does not completely preclude
scanning (Short and Pfarr, 2002; van der Velden et al., 2002).

An often-repeated idea is that increased expression of
initiation factor eIF4E might selectively elevate translation of
mRNAs that encode critical growth-regulatory proteins (Graff
and Zimmer, 2003). The selectivity is attributed to these
mRNAs having leader sequences which are GC-rich, hence
highly structured. One problem with the hypothesis is that the
mRNAs produced by most housekeeping genes also have
extremely GC-rich (N70%) leader sequences. Thus, there is no
structural basis for the idea that increased expression of eIF4E
specifically elevates translation of growth-regulatory genes.

When increased production of critical regulatory proteins is
needed, a proven solution in some cases is to change the
structure of the 5′ UTR via alternative splicing or activation of
a downstream transcriptional promoter. In other words, the
block to translation is relieved by truncating the long, GC-rich
5′ UTR (Charron et al., 1998; Han et al., 2003a,b; Sasahara et
al., 1998).9

Occasionally, experimental manipulations of 5′ UTR
sequences do not produce the expected effects on translation. In
cases where a long, GC-rich leader inhibits translation in vitro
but not in vivo (Hoover et al., 1997; Nikolcheva et al., 2002;
van der Velden et al., 2002), the simplest explanation might be
that the sequence harbors a cryptic promoter which generates
a better-translated short-leader transcript in vivo.10 The lesson is
that, when pondering the function of 5′ UTR structures, it is
a mistake to think only in terms of direct effects on initiation of
translation.

5. Reinitiation as a device for regulating translation in
eukaryotes

5.1. Mechanism of reinitiation

We know little about the molecular mechanisms underlying
reinitiation. Ribosomes initiate in the normal way at the first
AUG codon, producing the peptide encoded in the small
upstream ORF (upORF). At the terminator codon (where the
60S subunit presumably dissociates), the 40S subunit
apparently remains bound to the mRNA, resumes scanning, and
initiates again at a downstream site.

Whereas reinitiation in prokaryotes is facilitated when the
stop codon of the first cistron is closely apposed to the next
start codon, that arrangement works poorly, if at all, in
eukaryotes. Reinitiation in eukaryotes improves as the distance
increases between the stop codon and the re-start site (Kozak,
1987b; Abastado et al., 1991). This reflects a requirement for
the 40S subunit to reacquire Met-tRNAi, without which the
not sensitive enough to rule out production of a monocistronic mRNA at 1/20th
the level of the dicistronic mRNA (Bonneville et al., 1989). Inasmuch as TAV is
present in both the nucleus and cytoplasm of infected cells (Haas et al., 2005),
the possibility that TAV might augment splicing or transport of viral mRNAs,
rather than directly promoting translation, needs to be considered.

10 Recent experiments confirm this prediction for the pim-1 gene (Wang et al.
2005b).
,

next AUG codon cannot be recognized. Reinitiation can occur
only if there is enough time (distance) for the scanning 40S
subunit to pick up Met-tRNAi before arriving at the next AUG.
Reacquiring Met-tRNAi requires the help of eIF2 (i.e. a ternary
complex must assemble consisting of Met-tRNAi, eIF2, and
GTP), and therefore, reinitiation can be regulated by
manipulating eIF2·GTP levels. The significance of this is
explained in Section 5.2.

Reinitiation is affected by certain changes in mRNA
structure, enabling us to formulate working rules even though
the biochemical mechanisms are uncertain.

One rule is that eukaryotic ribosomes can reinitiate following
the translation of a small ORF but not following the translation
of a full-length protein-coding ORF. Naturally occurring
upORFs usually are only a few codons long. With experimental
constructs, reinitiation was found to decrease as the upORF was
lengthened, reaching a barely detectable level when the upORF
was 35 codons long (Kozak, 2001b; Rajkowitsch et al., 2004).
This might be explained if reinitiation depends on retention of
certain initiation factors which gradually dissociate from 80S
ribosomes during the course of elongation. This idea is
somewhat supported by experiments wherein manipulations
designed to slow elongation through the upORF (e.g. depleting
tRNA levels or introducing a base-paired structure into the
mRNA; Kozak, 2001b; Rajkowitsch et al., 2004) reduced the
efficiency of reinitiation. The hypothesis cannot really be tested
until we understand more about the cycling of initiation
factors.11

Another rule is that eukaryotic ribosomes cannot backup to
reinitiate at an AUG codon positioned far upstream from the
termination site. It follows that translation of the major coding
domain (the longest ORF) should be profoundly inhibited by an
overlapping upORF. Many observations verify this prediction.9

The bottom line is that, when an upORF is relatively small
and terminates before the start of the main coding domain,
reinitiation can occur; but reinitiation is never efficient. The
next section describes some consequences.
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5.2. Significance of reinitiation

The inefficient reinitiation mode of translation can regulate
gene expression in eukaryotes in four ways.

(i) The simplest effect is a reduction in protein production
from the major ORF. Countless experiments, wherein
translation of an mRNA was found to improve when
upstream AUG codons were mutated, confirm that small
upORFs can down-regulate translation (Blaschke et al.,
2003; Koš et al., 2002; Kriaucionis and Bird, 2004;
Pecqueur et al., 2001; Son et al., 2003). Examples such as
those in Fig. 6 support the hypothesis that small upORFs–
which force translation to occur by reinitiation–are used
to limit expression of potent proteinswhich are required in
Fig. 6. Small upstream ORFs down-regulate translation by imposing an inefficient
overproduction of potent proteins. (A) The presence of an overlapping upORF allows
al., 2003). In the adult pancreas where higher production of proinsulin is needed, a mo
Whereas the production of two forms of proinsulin mRNA is a normal event, the chan
Overexpression of the mdm2 oncogene in human tumor cells is caused by a switc
elevating translation 20-fold (Landers et al., 1997). (C) Pathological overproduct
upORF#7. (It is so numbered because there are additional minor forms of mRNAwi
abundant mRNA, depicted here.) In normal individuals, translation is strongly suppr
low. The depicted mutations elevate translation by truncating upORF#7 or (via de
overproduction of TPO causes hereditary thrombocythemia (Cazzola and Skoda, 20
small amounts but would be harmful if over-produced
(Kozak, 1991).
Many genes that produce barely translatable mRNAs,
due to small upORFs, turn out to harbor another
promoter downstream; and the short, AUG-free 5′ UTR
thereby produced boosts translation when more of the
protein is needed (Blaschke et al., 2003; Phelps et al.,
1998; Smith et al., 1998).9 Other genes accomplish this
via alternative splicing (Son et al., 2003). Alternative
promoters and/or splicing underlie some tumor-related
changes in gene expression; e.g. elevated translation of
a growth-promoting gene caused by switching to a
shorter, simpler 5′ UTR (Arrick et al., 1994; Landers et
al., 1997; Wang and Rothnagel, 2001), and reduced
translation of a tumor suppressor gene caused by
reinitiation mechanism. This constraint on translation ensures against harmful
only low-level production of proinsulin in chick embryos (Hernández-Sánchez et
re efficiently translated form of mRNA is produced via a downstream promoter.
ges in mRNA structure in the next two examples are rare pathological events. (B)
h in the transcriptional start site which eliminates two small upORFs, thereby
ion of thrombopoietin (TPO) is caused by various mutations that restructure
th additional upORFs; but the story can be understood by focusing on the most
essed by this overlapping upORF, ensuring that production of TPO is kept very
letion of 1 nt) fusing upORF#7 with the TPO coding domain. The resulting
00; Ghilardi and Skoda, 1999; Ghilardi et al., 1998).
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imposing an AUG-burdened 5′ UTR (Anant et al.,
2002; Frost et al., 2000).
The degree to which small upORFs inhibit translation
varies. This can be rationalized to some extent based on
whether the upstream AUG codons are in a strong or
weak context (Wang and Rothnagel, 2004); i.e. leaky
scanning can mitigate the inhibitory effects of upstream
AUGs. With extremely GC-rich leader sequences, the old
adage that “nothing bad can happen to a rotten eggplant”
might apply: the inhibitory effects of secondary structure
might be so profound that adding or removing an
upstream AUG codon barely matters.

(ii) When eIF2·GTP levels are low, the slow reacquisition of
Met-tRNAi might cause 40S subunits to bypass the
closest downstream AUG codon and advance farther
before reinitiating. Thus, the site where translation
reinitiates can be manipulated by the availability of
eIF2·GTP, and this can be manipulated by kinases which
respond to growth conditions and other cues (Clemens,
2001).
The best studied example involves the yeast GCN4 gene
(Gaba et al., 2001; Hinnebusch, 1997). The GCN4 protein
is a transcription factor which turns on expression of genes
involved in amino acid biosynthesis. Translation of GCN4
itself is regulated by amino acid availability because the 5′
UTR has four small upORFs, forcing translation to occur
Fig. 7. Small upORFs set up a reinitiation mechanism which allows translation of GC
has four upORFs, but the two depicted here (boxes 1 and 4) are sufficient to recons
resume scanning and might reinitiate at upORF4 or the GCN4 start site, depending
subunits quickly reacquire Met-tRNAi (indicated by cross-hatching), and reinitiation
reinitiation is precluded. (A possible explanation is that a sequence flanking the termin
shown directly.) The main point is that, if upORF4 gets translated, GCN4 cannot be tra
activate a kinase which phosphorylates eIF2, thereby impairing the GDP→GTP
reacquisition of Met-tRNAi, causes some 40S ribosomal subunits to bypass upORF4.
start site. (C) The foregoing explanation was tested by expanding the distance betwe
conditions of starvation (Abastado et al., 1991).
via reinitiation; and reinitiation is controlled by a kinase
activated by uncharged tRNAs. The kinase (GCN2)
phosphorylates eIF2 in a way that impairs the exchange
of GDP for GTP. When yeast are starved for amino acids,
uncharged tRNAs accumulate and operation of the
reinitiation mechanism changes, as explained in Fig. 7.
(Although genetic manipulations point to involvement of
eIF3 in some aspects of reinitiation (Nielsen et al., 2004),
eIF2 is the only component directly altered in response to
amino acid starvation).
Recent evidence suggests that translation of the ATF4
transcription factor in mammals is regulated via a GCN4-
like mechanism (Vattem and Wek, 2004). In this case,
upORF2 inhibits profoundly because it overlaps the start
of the ATF4 ORF. Small upORF1 augments translation
of ATF4 by causing upORF2 to be bypassed, to an extent
that depends on the availability of eIF2·GTP.

(iii) In rare cases, the peptide produced from translation of
a small upstream ORF has regulatory effects (Alderete et
al., 2001; Fang et al., 2004; Law et al., 2001). This
mechanism clearly is not involved in many other cases,
inasmuch as mutations that change the amino acid
sequence of the peptide do not change the inhibitory
effects of the upORF.

(iv) Occasionally, the clinical effects of a premature nonsense
codon in one or another gene are mitigated because
N4 only under conditions of amino acid starvation. The natural leader sequence
titute the regulation. Following translation of upORF1, 40S ribosomal subunits
on how quickly Met-tRNAi rebinds. (A) Under nonstarvation conditions, 40S
occurs at upORF4. upORF4 is peculiar in that, following its translation, further
ation site causes 40S subunits to dissociate from the mRNA, but this has not been
nslated. (B) Uncharged tRNAs, which accumulate in the absence of amino acids,
exchange reaction. The reduction in eIF2·GTP levels, and resulting slower
The ribosomes become competent to reinitiate by the time they reach the GCN4
en upORF1 and upORF4. This resulted in failure to translate GCN4 even under
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a truncated, but still functional, form of the protein is
produced by reinitiating at a fortuitously positioned
downstream AUG codon (Chang and Gould, 1998; Ozisik
et al., 2003). This is not a common escape mechanism
because mRNAs that carry a premature terminator codon–
the result of a point mutation or failure to remove an
intron–usually get degraded via a translation-linked
mechanism called nonsense-mediate decay (Baker and
Parker, 2004; Holbrook et al., 2004).

6. Regulation via proteins targeted to the 5′ UTR of
eukaryotic mRNAs

Ferritin is the major iron-binding protein in non-
hematopoietic tissues. Its function is to sequester excess
intracellular iron, thereby protecting against the generation of
harmful oxygen and nitrogen radicals which can damage DNA.
Translation of ferritin is turned on and off by an iron-response
protein (IRP) which binds a defined sequence (iron-response
element, IRE) near the 5′ end of the mRNA. The mechanism of
inhibition is straightforward: binding of IRP blocks entry of the
40S ribosomal subunit (Muckenthaler et al., 1998). The
biological importance of this mechanism is evident from the
pathological consequences of mutations in the repressor protein
(LaVaute et al., 2001) or the IRE (Allerson et al., 1999).12 In
addition to controlling translation of ferritin, the IRE–IRP
mechanism regulates other genes involved in iron uptake and
utilization. In the case of ferroportin, the IRE is near the 5′ end
of the mRNA and regulation is at the level of translation (Mok et
al., 2004). In the case of transferrin receptor, the IRE is in the 3′
UTR and regulation is at the level of mRNA stability (Casey et
al., 1989).

Regulation of translation by IRPs is so simple and efficient
that it seems surprising there are not more such examples.
Eukaryotic cells contain a plethora of mRNA-binding proteins,
but their primary roles are in processes other than translation
(e.g. splicing, mRNA transport, mRNA turnover). The
demonstrated effects on translation in vitro are slight (Fukuda et
al., 2004; Timchenko et al., 2001) or require an unnaturally high
concentration of the protein (Nekrasov et al., 2003). Although
more substantial effects were observed when these proteins
were tested in vivo, effects on mRNA stability or transport
might have been misinterpreted as effects on translation. In
short, claims of translational regulation by general RNA-
binding proteins are not convincing.

A major emerging story concerns proteins that bind to and
regulate translation of embryonic mRNAs. Many such proteins
bind to the 3′ UTR of the targeted mRNA (Kuersten and
Goodwin, 2003). Exactly how they function is unclear,
12 Two genes encode proteins, designated IRP1 and IRP2, capable of binding
the IRE. When the IRE was linked to reporter genes and their expression
studied in cultured cells, IRP1 appeared to be the major player; but this is now
recognized as an artifact caused by degradation of IRP2 during cell lysis and
activation of IRP1 by the unnaturally high concentration of oxygen used for
tissue culture (Meyron-Holtz et al., 2004a). Knockout experiments in animals
confirm that iron homeostasis is mediated primarily by IRP2 (Meyron-Holtz et
al., 2004b).
probably because the 3′ UTR-binding protein is only one piece
of the puzzle. Thus, an early attempt to explain how the Bicoid
protein represses translation of caudal mRNA in Drosophila
embryos (Niessing et al., 2002) proved to be mistaken because
the repression requires at least two proteins: Bicoid, bound to
the 3′ UTR, interacts with the recently discovered 4EHP
protein, bound to the m7G cap (Cho et al., 2005). This protein–
protein interaction effectively circularizes caudal mRNA; and
we understand how circularization of an mRNA prevents
ribosome binding (Kozak, 1979).
7. Common questions and misunderstandings about
initiation of translation in eukaryotes

7.1. Does complementarity between mRNA and 18S rRNA
augment translation?

No evidence implicates such a mechanism in eukaryotes.
Investigators sometimes point to sequences in one or another
mRNA that are partially complementary to short segments of
18S rRNA; but there is no consistency regarding which rRNA
segment is invoked, and no attention is paid to the (in)-
accessibility of the rRNA sequences. Students who remember
the prokaryotic story (Section 2.4) will understand that claims
of mRNA/rRNA complementarity are meaningless without
mutagenesis experiments to test the significance.
7.2. Misunderstandings about context

The optimal context for AUG codon recognition in mammals
was defined experimentally, as described in Section 4.3. cDNA
surveys sometimes raise doubts about the context rules, but it is
the surveys which are flawed: the calculations give equal weight
to all positions (ignoring the primacy of positions −3 and +4),
and the postulated start codons are only guessed (often guessed
incorrectly because the cDNAs are incomplete). When these
and other mistakes in interpretation are corrected, mammalian
mRNA/cDNA sequences show strong adherence to the
experimentally defined rules (Kozak, 1987c, 2000; Pesole et al.,
2000).

There are no grounds for thinking the initiation mechanism
in plants is substantially different from animals. Plant mRNA
sequences adhere to the mammalian consensus motif in
positions −3 and +4 (Pesole et al., 2000; Rogozin et al., 2001),
and mutagenesis experiments confirm that A −3 and G +4
strongly stimulate translation in plants (Jones et al., 1988;
Lukaszewicz et al., 2000). The consensus motif in plants differs
from animals only in the less important positions (−1, −2, −4,
−5), where A rather than C predominates.

Careless wording is used sometimes when describing the
context rules. It is wrong to say that “purines in positions −3
and +4” define an efficient initiation site (Hershey and Merrick,
2000); in fact, G is the only effective base in position +4. It is
also wrong to attribute the conservation of G +4 simply to
a requirement for certain amino acids (Ala, Val, Gly) in the
penultimate position of proteins. That facile explanation ignores



13 An additional complication, when eIF4E levels are manipulated in vivo, is
that the m7G/eIF4E interaction also affects mRNA stability and transport. In
the case of cyclin D1, for example, the step most affected is mRNA transport
rather than translation (Rousseau et al., 1996).
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the fact that G +4 augments translation even when the assay is
limited to the initiation step (Kozak, 1997).

The positive effect of G+ 4 can be negated by U in position
+5 (Kozak, 1997). Other than that, no particular base in position
+5 or +6 exerts an effect on initiation. Mutations introduced
near the beginning of the coding domain can alter the stability of
the encoded polypeptide, however, and that might explain the
mistaken notion that the optimal context for initiation includes
particular bases in positions +5 and +6 (Boeck and Kolakofsky,
1994; Grünert and Jackson, 1994).

In some human and mouse genes, naturally occurring
mutations or polymorphisms close to the AUG codon have
pathological consequences (Kozak, 2002b). These mutations
usually affect position −3 or +4, and the expected reduction in
translational efficiency has been confirmed in vitro. It would be
a mistake, however, to assume that every mutation in the
“Kozak sequence” is deleterious because of effects on
translation. Possible effects on mRNA stability or splicing must
always be considered (Kozak, 2003b).

It is a mistake also to be distracted by distance when making
predictions about leaky scanning. If the first AUG codon is in
a strong context, it will be the unique initiation site even when
the second AUG is very close (e.g. accAUGgcAUGg; Kozak,
1995). If the first AUG is in a poor context, the second AUG
will also be usable no matter how close or far it resides from the
first (e.g. 4 nt, Matsuda et al., 2004; 620 nt, Herzog et al., 1995).

7.3. Upstream AUG codons do not constitute “evidence
against scanning”

Some people mistakenly think the scanning hypothesis is
undermined by the presence of small upstream ORFs in many
mRNAs. This does not contradict the first-AUG rule because the
small upORFs are translated (Hackett et al., 1986; Hernández-
Sánchez et al., 2003; Oyama et al., 2004; Wang and Wessler,
2001). Whereas the encoded peptides were detected directly in
those examples, sometimes this is difficult because small
peptides are degraded rapidly. When the mRNA is reconfigured
in a way that fuses the upORF with a longer coding domain,
however, the upstream AUG codon can be shown to function
(Chen et al., 2005; Tanaka et al., 2001). This is true even for
picornaviruses (Borman and Jackson, 1992; Pöyry et al., 2001).

It is hard to know how many cellular mRNAs actually have
upstream AUG codons. Tallies of mammalian cDNA sequences
sometimes indicate a high frequency, but these statistical
calculations present a distorted picture. In some cases, only
a small fraction of transcripts from the gene in question carry the
AUG-burdened 5′ UTR (Kriaucionis and Bird, 2004; Laurin et
al., 2000; Perälä et al., 1994). Sometimes, sequencing errors
give the false appearance of upstream AUG codons (Kozak,
1996; Sanz et al., 1995, corrected in Rekdal et al., 2000). In
other cases, the cDNAs with upstream AUG codons turn out to
derive from incompletely processed transcripts; i.e. the
upstream AUGs are in an intron which gets removed from the
functional mRNA (Kozak, 2000). Reliance on a curated
database, such as RefSeq, reduces but does not eliminate these
problems.9
Not all upstream AUG codons are artifacts, of course. In
some–perhaps many–cellular mRNAs, small upORFs are used
deliberately to reduce translational efficiency, as shown for TPO
(Fig. 6C). This regulatory device works because the mRNA is
translated via scanning.

7.4. Cap-independent translation does not necessarily indicate
an IRES

Internal initiation is sometimes postulated upon finding that
translation of an mRNA is not strongly cap-dependent, but
studies with TMV show this reasoning to be faulty. This viral
mRNA is naturally capped, but its translation is relatively
resistant to inhibition by cap analogues or depletion of eIF4E
(Altmann et al., 1990; Hickey et al., 1976), and synthetic
uncapped transcripts bearing the TMV 5′ UTR are translated
efficiently in vitro (Sawasaki et al., 2002). Despite this
unusual lack of dependence on the m7G cap, three exper-
iments rule out the possibility that the sequence functions as
an IRES. (i) The TMV leader sequence promotes efficient
translation only when positioned directly at the 5′ end of
a transcript (Sleat et al., 1988). (ii) Ribosomes cannot bind to
a circularized form of the TMV leader sequence (Konarska et
al., 1981). (iii) Insertion of the TMV sequence at the midpoint
of a dicistronic mRNA does not allow translation of the 3′
cistron (Akbergenov et al., 2004). The simplest explanation
for the lack of dependence on the m7G cap is that the long
TMV leader sequence, A-rich and G-poor, is nearly devoid of
secondary structure.

With some other mRNAs, “cap-independent translation” is
claimed wrongly because of misunderstandings about initiation
factors. Textbooks are mistaken when they identify eIF4E as the
limiting component in translation. The concentration of this
factor is normally quite high (Rau et al., 1996; von der Haar and
McCarthy, 2002), and therefore, eIF4E levels can be reduced
without necessarily causing cap-dependent translation to fail.13

In the case of poliovirus, there is no doubt that translation is
cap-independent–the viral mRNA is not capped–but the
accompanying rationalization is wrong. Because the cap-
binding factor eIF4E normally associates with eIF4G, a popular
idea is that cleavage of eIF4G impairs cap-dependent
translation. Thus, textbooks tell us that cleavage of eIF4G
during poliovirus infection shuts down host translation while
allowing viral translation to continue via an IRES (Alberts et al.,
2002). This rationalization is contradicted, however, by the
timing of events in poliovirus-infected HeLa cells: the major
form of eIF4G is cleaved rapidly, but host protein synthesis
persists for some time thereafter (Malnou et al., 2004). The
discrepancy in timing is even greater in a neuronal cell line:
eIF4G is cleaved extensively by 3.5 h post-infection and
cleavage is complete by 5 h, but host protein synthesis
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continues unabated for at least 9 h (Yanagiya et al., 2005).14

Reconstruction experiments confirm that the truncated (100
kDa) form of eIF4G generated by the poliovirus-encoded
protease can still support translation of capped mRNAs (Ali et
al., 2001). Thus, translation under conditions where eIF4G gets
cleaved is not grounds for postulating a cap-independent
(IRES-mediated) mechanism of initiation.

What does constitute grounds for postulating internal
initiation? The most common test involves transposing
a suspected IRES from its normal 5′ position to the midpoint of
a synthetic dicistronic transcript and asking whether this allows
translation of the 3′ cistron. The test is undermined in many
cases, however, because the candidate IRES turns out to harbor
a cryptic promoter or splice site, causing the dicistronic DNA
vector to produce an unintended monocistronic mRNA (Dumas
et al., 2003; Han and Zhang, 2002; Han et al., 2003a,b; Hecht et
al., 2002; Liu et al., 2005; Sherrill et al., 2004; Van Eden et al.,
2004; Vergé et al., 2004; Wang et al., 2005b). In many other
cases, the RNA analyses required to rule out a cryptic promoter
or splice site simply were not done. An unexpected (and
disconcerting) finding is that the ability of putative IRESs to
support translation from a dicistronic vector depends on the
choice and arrangement of reporter genes (Hennecke et al.,
2001). In short, although much has been written in defense of
the internal initiation hypothesis (Hellen and Sarnow, 2001),
there are grounds for doubting much of the evidence (Kozak,
2001a, 2003a). Students might want to look carefully at the
experiments before accepting what textbooks say about this.

8. Experimental deficiencies underlie other
misunderstandings about translation

Awidespread problem is failure to recognize artifacts caused
by cleavage of the mRNA during incubation in cell-free
translation systems. Because proximity to the 5′ end is the main
determinant of start-codon selection in eukaryotes, silent
internal AUG codons can be converted to functional start sites
simply by fragmenting the mRNA.15 mRNA cleavage might
14 Some investigators try to rescue the hypothesis by suggesting that cleavage
of a second form of the factor (eIF4GII) is what shuts off host translation, but
this explanation requires testing. It merits mentioning that the yield of
poliovirus obtained from neuronal cells was nearly identical to that from HeLa
cells, although only HeLa cells showed substantial inhibition of host protein
synthesis (Yanagiya et al., 2005). This undermines the popular belief that, for
viral translation to succeed, competition from host mRNAs must be eliminated.
15 This artifact was recognized long ago (Bendena et al., 1985; Lawrence,
1980; Pelham, 1979) but has gradually been forgotten, even as conditions for
studying translation in vitro have evolved in ways that exacerbate the problem.
Some commercial reticulocyte translation systems are not strongly cap-
dependent (Kozak, 1998, Fig. 6) and this invites translation of broken mRNAs.
mRNAs are rapidly degraded in HeLa cell-free extracts, especially when an
elevated temperature (37 °C) is used. It is unwise to incubate reactions for ≥90
min and then interpret what one sees as an effect on the initiation step of
translation. Formation of initiation complexes takes only about 5 min. The
longer the incubation, the more one has to worry about artifacts caused by
cleavage of the mRNA. Artifactual initiation from a downstream AUG codon
can be caused also by failure to adjust the Mg2+ concentration in reticulocyte
lysates (Kozak, 1990b). For this or other reasons, coupled transcription/
translation systems often show inappropriate selection of start codons.
explain why upORFs which strongly inhibit translation in vivo
are sometimes less inhibitory in vitro (Ghilardi et al., 1998;
Meijer et al., 2000; Pecqueur et al., 2001; Tanaka et al., 2001)
and why translation sometimes initiates in vitro at far-
downstream AUG codons which are not used in vivo (Byrd et
al., 2002, Fig. 3C; Hassin et al., 1986; Meulewaeter et al., 1992;
Peeters et al., 2004). In vitro translation reactions that generate
an array of low molecular weight polypeptides are a sure sign of
mRNA degradation (e.g. Van Eden et al., 2004, Fig. 2B, lane 2).
Failure to recognize this problem underlies many faulty
interpretations, including claims of IRES activity (Venkatesan
and Dasgupta, 2001) and exaggerated estimates of the size of the
human proteome (Kettman et al., 2002). The latter study showed
that single transcripts, each derived from a cloned cDNA, gave
rise to multiple polypeptides when translated in vitro; but the
possibility of artifacts caused by mRNA cleavage was not
considered.

When translation is studied in vivo, a major deficiency is
failure to search for all possible forms of mRNA. It is wrong to
claim tissue-specific inhibition by upstream AUG codons
(Muller and Danner, 2004; Zimmer et al., 1994)–i.e. wrong to
claim regulation at the level of translation–without having
looked for possible tissue-specific changes in structure of the 5′
UTR. A popular idea is that, because eIF4E is elevated in tumor
cells (as are many other components of the translational
machinery), eIF4E might augment translation of critical
regulatory genes (Buechler and Peffley, 2004; Nikolcheva et al.,
2002; Sunavala-Dossabhoy et al., 2004). But it is unwise to look
only at initiation factors and to ignore possible changes in
structure of the mRNA. Restructuring of the 5′ UTR, via
alternative splicing or promoter usage, is a common phe-
nomenon in tumor cells (Dabrowska and Sirotnak, 2004; Perrais
et al., 2001a,b; other examples are cited in Section 5.2).

Some investigators invoke a shunting mechanism (i.e.
discontinuous scanning) upon finding that upstream AUG
codons or base-paired structures do not cause the expected
block to translation (Sen et al., 2004, and references therein).
But the structures that failed to block translation might have
been eliminated via splicing. Claims of shunting published
without verification of the mRNA structure are meaningless
(Rogers et al., 2004). The shunting hypothesis ignores big
questions (e.g. how do ribosomes decide where to resume
scanning?) and is supported by no credible evidence.

There are occasional reports of other bizarre translation
mechanisms, such as initiation without Met-tRNAi (Cevallos
and Sarnow, 2005). This study employs unproven assays (e.g.
use of agarose gels rather than sucrose gradients to demonstrate
“initiation complexes”) and points to a smear of uncharacterized
peptide (?) products as evidence that an initiation-factor-
independent IRES supports translation from a dicistronic
mRNA. Because the mRNA in question encodes the viral
capsid protein, which is required in large amounts, a credible
story requires showing that the unusual initiation mechanism
works efficiently (e.g. by comparison to a normal, Met-tRNA-
dependent, monocistronic mRNA). The question of efficiency
was ignored. Moreover, elaborate experiments with synthetic
dicistronic constructs were undertaken without first showing
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that the natural dicistronic mRNA actually supports translation
of the capsid protein. A subgenomic, monocistronic mRNA for
the capsid protein might be found in virus infected cells, if
someone were to look.

Similar claims about a putative IRES from cricket paralysis
virus (Hellen and Sarnow, 2001) are called into question by
a recent study in which IRES activity, assayed via synthetic
dicistronic constructs, and actual virus replication were tested in
a range of insect cell lines. The notable finding is that the test for
IRES activity failed completely in the two cell lines that produced
the highest yield of virus (Masoumi et al., 2003). This is a small
warning against the growing practice of “reconstructing”
translational regulatory mechanisms, using reporter genes in
vitro, without first having gathered the basic facts about the
natural process. Molecular biologists are supposed to explain
biology, not invent it.
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