, .\

orithm Desigr

JON KLEINBERG - EVA TARDOS

Chapter 4

Greedy
Algorithms

PEARSON Slides by Kevin Wayne.
Aidisan Copyright © 2005 Pearson-Addison Wesley.
Weslew | All rights reserved.

Coin Changing

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method
to pay amount to customer using fewest number of coins.

Cashier's algorithm. At each iteration, add coin of the largest value
that does not take us past the amount to be paid.

Ex: $2.89.

Coin-Changing: Greedy Algorithm

CASHIERS — ALGORITHM(x, ¢y, -, Cn)
1: SORT n coin denominations sothatc; < ¢ < --- < ¢p.
2: S« ()
3: while x > 0 do
4 k < largest coin denomination ¢, such that ¢, < x.
5. if no such k then
6
7
8
9

return “no solution”.
else
X — X—=Ck, S « SU{K]J.
end if
10: end while
11: return S.

Q. Is cashier's algorithm optimal?

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.
Pf. (by induction on x)
. Consider optimal way to change ¢, < x < ¢,,; : greedy takes coin k.
. We claim that any optimal solution must also take coin k.
- if not, it needs enough coins of type ¢, ..., ¢,1 to add up to x
- table below indicates no optimal solution can do this
. Problem reduces to coin-changing x - ¢, cents, which, by induction, is
optimally solved by greedy algorithm. -

All optimal solutions| Max value of coins
must satisfy 1,2,..,k-1inany OPT

P<4 -
N<1 4

N+D<?2 4+5=9
Q<3 20+4 =24
no limit 75+ 24 =99

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal
denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
. Greedy: 100, 34,1,1,1,1,1,1,
. Optimal: 70, 70.

4.1 Interval Scheduling

Interval Scheduling

Interval scheduling.
. Job j starts at sjand finishes at f;.
. Two jobs compatible if they don't overlap.
. Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

. [Earliest start fime] Consider jobs in ascending order of start time
S;.

. [Earliest finish time] Consider jobs in ascending order of finish
time fj.

. [Shortest interval] Consider jobs in ascending order of interval
length f; - s;.

. [Fewest conflicts] For each job, count the number of conflicting
jobs ¢;. Schedule in ascending order of conflicts c;.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

EARLIEST — FINISH — TIME — FIRST(n, sy, ,Sp, f, -+, fp)
1: SORT jobs by finishtime sothat fy < fbh <--- <f,.

2: A0

3. forj=1tondo
4: if job jis compatible with A then
5: A — AU {jl.
6 end if

7: end for

8: return A.

Implementation. O(n log n).
- Remember job j* that was added last to A.
. Job j is compatible with A if 5;> f..

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
. Assume greedy is not optimal, and let's see what happens.
. Let iy, i, ... ixdenote set of jobs selected by greedy.
. Let ji, jo, ... jm denote set of jobs in the optimal solution with
i1 = j1, 2= j2, ..., in = j. for the largest possible value of r.

job i.. finishes before j..;

]

N N
I

why not replace job j.1
with job i..?

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
. Assume greedy is not optimal, and let's see what happens.
. Let iy, i, ... ixdenote set of jobs selected by greedy.
. Let ji, jo, ... jm denote set of jobs in the optimal solution with
i1 = j1, 2= j2, ..., in = j. for the largest possible value of r.

job i.. finishes before j..;

]

I

solution still feasible and optimal,
but contradicts maximality of r.

4.1 Interval Partitioning

Interval Partitioning

Interval partitioning.
. Lecture j starts at s; and finishes at f;.
. Goal: find minimum number of classrooms to schedule all lectures so
that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

a

9 %30 10 10:30 11 11:30 12 12:30 1

Interval Partitioning

Interval partitioning.
. Lecture j starts at s; and finishes at f;.
. Goal: find minimum number of classrooms to schedule all lectures so
that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

a e

9 %30 10 10:30 11 11:30 12 12:30 1

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed > depth.

Ex: Depth of schedule below = 3 = schedule below is optimal.

T

a, b, c all contain 9:30

Q. Does there always exist a schedule equal o depth of intervals?

a e

9 %30 10 10:30 11 11:30 12 12:30 1

Interval Partitioning: Greedy Algorithm

EARLIEST — START — TIME — FIRST(n, $1,--- , Sp, f1, -

1: SORT lectures by starttime sothat sy < s, <--- <).
2. d<0 % number of allocated classrooms

3: forj=1tondo

4: 1f lecture jis compatible with some classroom then
5 Schedule lecture j in any such classroom k.

6: else
7
8
9

Allocate a new classroom d + 1.

Schedule lecture j in classroom d + 1.
de—d-+ 1

10: end if

11: end for

12: return schedule.

Implementation. O(n log n).

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.
. Let d = number of classrooms that the greedy algorithm allocates.
. Classroom d is opened because we needed to schedule a job, say j,
that is incompatible with all d-1 other classrooms.
. Since we sorted by start time, all these incompatibilities are caused
by lectures that start no later thans;.
- Thus, we have d lectures overlapping at time s; + «.
. Key observation = all schedules use > d classrooms. -

4.2 Scheduling to Minimize Lateness

Scheduling to Minimizing Lateness

Minimizing lateness problem.
. Single resource processes one job at a fime.
Job j requires t; units of processing time and is due at time d;.
If j starts at time s;, it finishes at time f; = s; + t;.
Lateness: /;=max {0, f;-d;}.
Goal: schedule all jobs to minimize maximum lateness L = max /;.

1)2]3]4[5]6
3 2 1 4 3 2
6 8 9 9 14 15

lateness = 2 lateness = 0 max lateness = 6

| l |
d5 =14
9 10 11

Minimizing Lateness: Greedy Algorithms

Greedy tfemplate. Consider jobs in some order.

. [Shortest processing tfime first] Consider jobs in ascending order
of processing fime t;.

. [Earliest deadline first] Consider jobs in ascending order of
deadline d;.

- [Smallest slack] Consider jobs in ascending order of slack d; - 1.

Minimizing Lateness: Greedy Algorithms

Greedy tfemplate. Consider jobs in some order.

. [Shortest processing tfime first] Consider jobs in ascending order
of processing fime t;.

1
100 10

counterexample

- [Smallest slack] Consider jobs in ascending order of slack d; - 1.

10

BN :
210

counterexample

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

EARLIEST — DEADLINE — FIRST(n,t;,--- ,t,, dy, - --
1: SORT jobssothatd; <d> <--- < dp.
t«0
. forj=1tondo
Assign job j to interval [t, t + t].

[<« [+ 1 &
. end for
. return Intervals [sq, f1], [S2, 2], - -, [Sn, T

2
3
4
5: Sj«—tfi—t+{
6
/
8

max lateness = 1

|
d5 = 14
10 11 12 13 14 15

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs iand j such that:
i < j but j scheduled before i. inversion

! |

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has
one with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs iand j such that:
i < j but j scheduled before i. inversion

I

f';

Claim. Swapping two adjacent, inverted jobs reduces the number of
inversions by one and does not increase the max lateness.

Pf. Let ¢ be the lateness before the swap, and let ¢ * be it afterwards.
. (=l forall k=i, |
. 0L
. If job jis late:

C o

(definition)

(J finishes at time 7)
(F<yJ)

(definition)

IAIA
S S SHCH
|
Q. Q Q

~.

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.
Pf. Define S* to be an optimal schedule that has the fewest number of
inversions, and let's see what happens.
. Can assume S* has no idle time.
. If S* has no inversions, then S = S*,
. If S* has an inversion, let i-j be an adjacent inversion.
- swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions
- this contradicts definition of S* -

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the
greedy algorithm, its solution is at least as good as any other
algorithm's.

Exchange argument. Gradually transform any solution to the one found
by the greedy algorithm without hurting its quality.

Structural. Discover a simple "structural" bound asserting that every
possible solution must have a certain value. Then show that your
algorithm always achieves this bound.

4.3 Optimal Caching

Optimal Offline Caching

Caching.
. Cache with capacity to store k items.
. Sequence of m item requests dy, d,, ..., d,.
. Cache hit: item already in cache when requested.
. Cache miss: item not already in cache when requested: must bring
requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.
Ex: k=2, initial cache = ab,

requests: a,b,c,b,c,a,a,b.
Optimal eviction schedule: 2 cache misses.

o 9 O O T O T oS
- B - O

O O U U T T T O

Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

currentcache:. a b ¢ d e f

futurequeriess g a b ce dabbacdeafadefgh...
f f

cache miss eject this one

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts an item into
the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one
with no more cache misses.

o O O T 9 o 60 o o
o O O O O O O O o
- -N--E
- - EEEEE -
- OoER

c
c
c
b
b
b
b
c
c

o o o T 9 a o o o
0 O o o o o o o o

an unreduced schedule a reduced schedule

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S' with no more cache misses.

Pf.
. Suppose S brings d into the cache at time t, without a request.
. Let c be the item S evicts when it brings d into the cache.
. Case 1. devicted at time t', before next request for d.
. Case 2: drequested at time t' before d is evicted. -

d evicted at time t', d requested at time t'
before next request

Case 1 Case 2

Farthest-In-Future: Analysis

Theorem. FF is optimal eviction algorithm.
Pf. (by induction on number of requests j)

Invariant: There exists an optimal reduced schedule S that makes
the same eviction schedule as Sgr through the first j+1 requests.

Let S be reduced schedule that satisfies invariant through j requests.
We produce S’ that satisfies invariant after j+1 requests.
- Consider (j+1)* request d = dj.;.
. Since S and Sgr have agreed up until now, they have the same cache
contents before request j+1.
. Case 1. (dis already in the cache). S’ = S satisfies invariant.
. Case 2: (d is not in the cache and S and Sgr evict the same element).
S' = S satisfies invariant.

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S’ take a different action,
and let g be item requested at time j'. T

must involve e or f (or both)

S S'

. Case 3a: g=e. Can't happen with Farthest-In-Future since there
must be a request for f before e.

. Case 3b: g=f. Element f can't be in cache of S, so let e’ be the
element that S evicts.
-ife' = e, S' accesses f from cache; now S and S' have same cache
- if e’ #e, S' evicts e’ and brings e into the cache; now S and S’

have the same cache

T

Note: S'is no longer reduced, but can be transformed into
a reduced schedule that agrees with Sgr through step j+1

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S’ take a different action,
and let g be item requested at time j'. T

must involve e or f (or both)

S

otherwise S' would take the same action

l

. Case 3c: g=e, f. Smustevicte.
Make S' evict f; now S and S' have the same cache. -

Caching Perspective

Online vs. offline algorithms.
. Offline: full sequence of requests is known a priori.
. Online (reality): requests are not known in advance.
. Caching is among most fundamental online problems in CS.

LIFO. Evict page brought in most recently.
LRU. Evict page whose most recent access was earliest.

T

FF with direction of time reversed!

Theorem. FF is optimal offline eviction algorithm.
. Provides basis for understanding and analyzing online algorithms.
. LRU is k-competitive. [Section 13.8]
. LIFO is arbitrarily bad.

4.4 Shortest Paths in a Graph

‘Princeton

PRIMCETOM
CEMETER™Y.

Princeton
N .Cemetery

Mercer 5
Counfy B
gy]ug‘icipal Court

PRINCWTON.

HNIMERSITY

%

2

ok
2
iy
)
B

&‘m.._

SPRINGDALE
GOLF CLUB

shortest path from Princeton CS department to Einstein's house

Shortest Path Problem

Shortest path network.
. Directed graph G = (V, E).
. Source s, destination t.
. Length 7, >0, length of edge e.

Shortest path problem: find shor'T’res‘r directed path from s to t.

cost of path = sum of edge costs in path

14 18 Cost of path s-2-3-5-t
= 9+23+2+16
30 = 48

15 5

Dijkstra's Algorithm

Dijkstra's algorithm.
. Maintain a set of explored nodes S for which we have determined
the shortest path distance d(u) from s to u.
. Initialize S={s}, d(s)=0.
. Repeatedly choose unexplored node v which minimizes

7(v)= min du)+/,,

e=(u,v):uef

- shortest path to some u in explored
Cldd v to S’ and set d(V) TC(V)' part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.
. Maintain a set of explored nodes S for which we have determined
the shortest path distance d(u) from s to u.
. Initialize S={s}, d(s)=0.
. Repeatedly choose unexplored node v which minimizes

7(v)= min du)+/,,

e=(u,v):uef

- shortest path to some u in explored
Cldd v to S’ Cmd set d(V) TC(V)' part, followed by a single edge (u, v)

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u € S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S|)
Base case: |S| =1is trivial.
Inductive hypothesis: Assume true for |S| =k > 1.

. Let v be next node added to S, and let u-v be the chosen edge.

. The shortest s-u path plus (u, v) is an s-v path of length n(v).

. Consider any s-v path P. We'll see that it's no shorter than n(v).

. Let x-y be the first edge in P that leaves S,

and let P* be the subpath to x.
. P is already too long as soon as it leaves S.

CP) 2 0P+ (xy) = dX)* £ (X, y) = n(y) = n(v)
T T T T

nonnegative inductive defn of n(y) Dijkstra chose v
weights hypothesis instead of y

Dijkstra's Algorithm

Dijkstra’sAlgorithm(G,)
1: Let S be the set of explored nodes.
. For each u € S, we store a distance d(u).
- Initially S « {s} and d(s) « 0.
. While S # V do
Select a node v ¢ S with at least one edge from S for
which d'(v) = ming_(yy).ues d(U) + e is as small as pos-
sible.
Add v to S and define d(v) « d'(v)
. end while
. return S.

2
3
4
3}

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain z(v)= min d(u)+/, .

e=(uy):ues

. Next node to explore = node with minimum =(v).
. When adding v, for each incident edge e = (v, w), update

z(w) =min { 7(w), T(v)+{, }.

Efficient implementation. Dijkstra's algorithm can find the shortest
path in O(n2) time.

Homework

.Read Chapter 4 of the textbook.

.Exercises 4, 6,7 & 13 in Chapter 4.

