

有限元分析的典型 Project

【高级建模 Project8】p 方法的建模与应用 平面问题的 p 型单元建模与分析

如图 8.1 所示,带孔方板受均布拉力作用,使用 p 型单元,分析孔边缘最大应力,相关的参数如下。

几何: L=150mm, H=80mm, R1=5mm R2=10mm t=0.5mm;

材料: $E = 2 \times 10^5$ MPa, $\mu = 0.25$;

载荷: Pressure=100MPa。

图 8.1 带孔方板及 p 型单元建模

【建模要点】

- 1. 采用 p 型单元 PLANE145,采用常规的建模流程进行建模,可以采取较粗的网格, p 方法 将采用增加各单元基底函数阶次的方法来改善计算精度;
- 根据对称性,取一半的对象进行常规的建模。在该模型中,将生成两个圆面,可以采用命 令<WPOFFS>来平移工作面,以便采用命令<PCIRC>来生成圆面;
- 3. 在求解之前,需要设置关键节点的物理量,通过命令<PCONV>来采用p方法中的p阶次 来以控制计算误差,一般情况下,对局部的计算精度来进行控制,为提高计算效率,对于 一些非关键点周边的单元,可以保持单元的p阶次不变,采用命令<PMOPTS>来进行设置, 可以设置多点的p方法收敛准则;
- 4. 在求解模块中,需要通过命令<PCONV>来设置关键物理量的控制误差。
- 5. 求解后,在后处理中,需要采用命令<SET>调出计算结果,采用命令<*GET>获取关键位 置上的计算结果,采用命令<PLCONV>及<PPLOT>显示和图示 p 方法的收敛曲线及单元 的 p 阶次。

得到的计算结果见表 8.1。

物理量	ANSYS 计算结果
孔边 P1 点的 x 方向应力 P1_SX	266.338MPa
孔边 P2 点的 x 方向应力 P2_SX	296.228MPa

表 6-8 带孔方板及 p 型单元的计算结果

【文件】完整的命令流。	
!%%%%% [应用建模 Project8] %%%%% begin %%%%%%%%%%%%%%%	
C*** 采用 p 方法分析带两孔的平面问题	
/PREP7	!进入前处理
ANTYPE,STATIC	!设定为静力结构分析
ET,1,PLANE145,,,3	!设置 1 号单元(p 型单元)
MP,EX,1,2e5 \$MP,PRXY,1,0.25	!设置1号材料弹性常数
L=150 \$H=80 \$R1=5 \$R2=10 \$t=0.5	!设置几何参数
Pressure=100	!设置载荷参数
RECTNG,0,L,0,H	!建立一个矩形面
WPOFFS,L/3,,	!平移工作平面(x1=L/3)
PCIRC,R2,0,0,360	!建立一个圆面(R2)
WPOFFS,L/3,,	!再平移工作平面(x2=x1+L/3)
PCIRC,R1,0,0,360	!建立一个圆面
R,1,t	!设置厚度
ASBA,1,2	!将面1减面2,则生成面4
ASBA,4,3	!将面4减面3
SMRTSIZ,4	!设置自动网格划分指数
AMESH,1	!对面进行单元划分
NSEL,S,LOC,X,0	!选取 x=0 节点
D,ALL,UX,0	!施加对称约束
NSEL,S,LOC,Y,0	!选取 y=0 节点
DSYM,SYMM,Y	!施加对称约束
NSEL,S,LOC,X,L	!选取右边界节点
SF,ALL,PRES,-Pressure	!对所选择节点施加载荷
ALLSEL	!选取所有对象
FINISH	!退出前处理
/SOLU	!进入求解模块
P1=NODE(2*L/3,R1,0)	!获取位置(2*L/3,R1,0)处的节点号,赋给参数 P1
P2=NODE(L/3,R2,0)	!获取位置(L/3,R2,0)处的节点号,赋给参数 P2
PMOPTS	!设置 p 方法中固定单元 p 阶次的误差,默认 5%
PCONV,0.2,S,X,P1	!针对 P1 节点,采用 p 方法,设置应力 SX 的误差在 0.2%以内
PCONV,0.2,S,X,P2	!针对 P2 节点,采用 p 方法,设置应力 SX 的误差在 0.2%以内
SOLVE	!进行求解
/POST1	!进入后处理
SET,1	!调出结果的1号数据集
PLNSOL,S,X	!图形显示 x 方向的应力计算结果
PLDISP,1	!图形显示受力后的模型结构
*GET,P1_SX,NODE,P1,S,X	!获取节点 P1 处的应力 SX, 赋给参数 P1_SX
*GET,P2_SX,NODE,P2,S,X	!获取节点 P2 处的应力 SX, 赋给参数 P2_SX
PLCONV	!图形显示 p 方法的收敛曲线
PPLOT	!图形显示实际所用单元 p 阶次
*STATUS	!列显参数的内容
!%%%%% [应用建模 Project8] %%%% end %%%%%%%%%%%%%%	