
1

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

3

Maximum Flow and Minimum Cut

Max flow and min cut.
n Two very rich algorithmic problems.
n Cornerstone problems in combinatorial optimization.
n Beautiful mathematical duality.

Nontrivial applications / reductions.
n Data mining.
n Project selection.
n Airline scheduling.
n Bipartite matching.
n Image segmentation.
n Network connectivity.

n Network reliability.
n Distributed computing.
n Security of statistical data.
n Network intrusion detection.
n Multi-camera scene reconstruction.
n Many many more . . .

4

Flow network.
n Abstraction for material flowing through the edges.
n G = (V, E) = directed graph, no parallel edges.
n Two distinguished nodes: s = source, t = sink.
n c(e) = capacity of edge e.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
capacity

source sink

5

Def. An s-t cut is a partition (A, B) of V with s A and t B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

 Capacity = 10 + 5 + 15
 = 30

 A

cap(A, B) c(e)
e out of A

6

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
 A

Cuts

Def. An s-t cut is a partition (A, B) of V with s A and t B.

Def. The capacity of a cut (A, B) is:

cap(A, B) c(e)
e out of A

 Capacity = 9 + 15 + 8 + 30
 = 62

7

Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 A

 Capacity = 10 + 8 + 10
 = 28

8

Def. An s-t flow is a function that satisfies:
n For each e E: (capacity)
n For each v V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0
0

0

Value = 40

f (e)
e in to v
 f (e)

e out of v

0 f (e) c(e)

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

v(f) f (e)
e out of s
 .

4

9

Def. An s-t flow is a function that satisfies:
n For each e E: (capacity)
n For each v V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

10

6

6

11

1 10

3 8 8

0
0

0

11

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

f (e)
e in to v
 f (e)

e out of v

0 f (e) c(e)

v(f) f (e)
e out of s
 .

4

10

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

11

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

f (e)
e out of A
 f (e)

e in to A
 v(f)

4

A

12

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

f (e)
e out of A
 f (e)

e in to A
 v(f)

 Value = 6 + 0 + 8 - 1 + 11
 = 24

4

11

A

13

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

f (e)
e out of A
 f (e)

e in to A
 v(f)

 Value = 10 - 4 + 8 - 0 + 10
 = 24

4

A

14

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf.

f (e)
e out of A
 f (e) v(f)

e in to A
 .

v(f) f (e)
e out of s

v A
 f (e)

e out of v
 f (e)

e in to v

 f (e)
e out of A
 f (e).

e in to A

by flow conservation, all terms
except v = s are 0

15

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 Flow value 30

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

A

16

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) cap(A, B).

Pf.

▪

Flows and Cuts

v(f) f (e)
e out of A

 f (e)
e in to A

 f (e)
e out of A

 c(e)
e out of A

 cap(A, B)
s

t

A B

 7

6

 8
4

17

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 Flow value 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0A

18

Towards a Max Flow Algorithm

Greedy algorithm.
n Start with f(e) = 0 for all edge e E.
n Find an s-t path P where each edge has f(e) < c(e).
n Augment flow along path P.
n Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

19

Towards a Max Flow Algorithm

Greedy algorithm.
n Start with f(e) = 0 for all edge e E.
n Find an s-t path P where each edge has f(e) < c(e).
n Augment flow along path P.
n Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

20

Towards a Max Flow Algorithm

Greedy algorithm.
n Start with f(e) = 0 for all edge e E.
n Find an s-t path P where each edge has f(e) < c(e).
n Augment flow along path P.
n Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality global optimality

21

Residual Graph

Original edge: e = (u, v) E.
n Flow f(e), capacity c(e).

Residual edge.
n "Undo" flow sent.
n e = (u, v) and eR = (v, u).
n Residual capacity:

Residual graph: Gf = (V, Ef).
n Residual edges with positive residual capacity.
n Ef = {e : f(e) < c(e)} {eR : c(e) > 0}.

u v 17

6

capacity

u v 11

residual capacity

 6
residual capacity

flow

c f (e)
c(e) f (e) if e E
f (e) if eR E

22

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

 G:
capacity

23

Augmenting Path Algorithm

forward edge

reverse edge

24

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing :
 (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

(i) (ii) This was the corollary to weak duality lemma.

(ii) (iii) We show contrapositive.
n Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

25

Proof of Max-Flow Min-Cut Theorem

(iii) (i)
n Let f be a flow with no augmenting paths.
n Let A be set of vertices reachable from s in residual graph.
n By definition of A, s A.
n By definition of f, t A.

v(f) f (e)
e out of A

 f (e)
e in to A

 c(e)
e out of A

 cap(A, B)

original network

s

t

A B

26

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities cf (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) nC iterations.
Pf. Each augmentation increase value by at least 1. ▪

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a
max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. ▪

7.3 Choosing Good Augmenting Paths

28

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

29

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
n Some choices lead to exponential algorithms.
n Clever choices lead to polynomial algorithms.
n If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
n Can find augmenting paths efficiently.
n Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
n Max bottleneck capacity.
n Sufficiently large bottleneck capacity.
n Fewest number of edges.

30

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
n Don't worry about finding exact highest bottleneck path.
n Maintain scaling parameter .
n Let Gf () be the subgraph of the residual graph consisting of only

arcs with capacity at least .

110

s

4

2

t 1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

31

Capacity Scaling

32

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
n By integrality invariant, when = 1 Gf() = Gf.
n Upon termination of = 1 phase, there are no augmenting paths. ▪

33

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + log2 C times.
Pf. Initially C < 2C. decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a -scaling phase. Then the
value of the maximum flow is at most v(f) + m .

Lemma 3. There are at most 2m augmentations per scaling phase.
n Let f be the flow at the end of the previous scaling phase.
n L2 v(f*) v(f) + m (2).
n Each augmentation in a -phase increases v(f) by at least . ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m2 log C) time. ▪

proof on next slide

34

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a -scaling phase. Then value
of the maximum flow is at most v(f) + m .
Pf. (almost identical to proof of max-flow min-cut theorem)
n We show that at the end of a -phase, there exists a cut (A, B)

such that cap(A, B) v(f) + m .
n Choose A to be the set of nodes reachable from s in Gf().
n By definition of A, s A.
n By definition of f, t A.

v(f) f (e)
e out of A

 f (e)
e in to A

 (c(e)
e out of A

)
e in to A

 c(e)
e out of A

e out of A

e in to A

 cap(A, B) - m

original network

s

t

A B

7.5 Bipartite Matching

36

Matching.
n Input: undirected graph G = (V, E).
n M E is a matching if each node appears in at most edge in M.
n Max matching: find a max cardinality matching.

Matching

37

Bipartite Matching

Bipartite matching.
n Input: undirected, bipartite graph G = (L R, E).
n M E is a matching if each node appears in at most edge in M.
n Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL

38

Bipartite Matching

Bipartite matching.
n Input: undirected, bipartite graph G = (L R, E).
n M E is a matching if each node appears in at most edge in M.
n Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3' 4-4'

39

Max flow formulation.
n Create digraph G' = (L R {s, t}, E').
n Direct all edges from L to R, and assign infinite (or unit) capacity.
n Add source s, and unit capacity edges from s to each node in L.
n Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

RL

G'

40

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf.
n Given max matching M of cardinality k.
n Consider flow f that sends 1 unit along each of k paths.
n f is a flow, and has cardinality k. ▪

Bipartite Matching: Proof of Correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

3

5

1'

3'

5'

2

4

2'

4'

G'G

41

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf.
n Let f be a max flow in G' of value k.
n Integrality theorem k is integral and can assume f is 0-1.
n Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R participates in at most one edge in M
– |M| = k: consider cut (L s, R t) ▪

Bipartite Matching: Proof of Correctness

1

3

5

1'

3'

5'

2

4

2'

4'

G

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

G'

42

Which max flow algorithm to use for bipartite matching?
n Generic augmenting path: O(m val(f*)) = O(mn).
n Capacity scaling: O(m2 log C) = O(m2).
n Shortest augmenting path: O(m n1/2).

Non-bipartite matching.
n Structure of non-bipartite graphs is more complicated, but

well-understood. [Tutte-Berge, Edmonds-Galai]
n Blossom algorithm: O(n4). [Edmonds 1965]
n Best known: O(m n1/2). [Micali-Vazirani 1980]

Bipartite Matching: Running Time

