Chapter 7
Network Flow

Alqorithm Uesion

JON KLEINBERG - EVA TARDOS |

PEARSON Slides by Kevin Wayne.

T Copyright ® 2005 Pearson-Addison Wesley.
Weslew All rights reserved.

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut,
Two very rich algorithmic problems.
Cornerstone problems in combinatorial optimization.
Beautiful mathematical duality.

Nontrivial applications / reductions.
Data mining. . Network reliability.
Project selection. . Distributed computing.
Airline scheduling. - Security of statistical data.

Bipartite matching. - Network intrusion detection.

Image segmentation. . Multi-camera scene reconstruction.
Network connectivity. - Many many more . ..

Minimum Cut Problem

Flow network.
. Abstraction for material flowing through the edges.
. 6 =(V, E)=directed graph, no parallel edges.
. Two distinguished nodes: s = source, T = sink.
. c(e) = capacity of edge e.

/?<

\L \é/

10
capacity —

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B)is: cap(4,B) = X c(e)

eout of 4

10

Capacity =10+ 5 + 15
=30

e
94 N ®
N

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is:

cap(A, B) =

2. c(e)

eout of 4

®

10

Capacity =9 +15 + 8 + 30
=62

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. Ans-t flow is a function that satisfies:
. Foreache ¢ E: 0 < f(e) < c(e) (capacity)
. ForeachveV-{s, 1t} Xf(e) = X f(e) (conservation)

eintov eoutof v

Def. The value of a flow fis: v(f) = 2 f(e) .

eoutof s

@ ®

15 0

© ©

capacity — 15

flow — 0
Value = 4

Flows

Def. Ans-t flow is a function that satisfies:
. Foreache ¢ E: 0 < f(e) < c(e) (capacity)
. ForeachveV-{s, 1t} Xf(e) = X f(e) (conservation)

eintov eoutof v

Def. The value of a flow fis: v(f) = 2 f(e) .

eoutof s

®

© ®

capacity — 15

flow — 11
Value = 24

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

© ®

capacity — 15

flow — 14
Value = 28

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) — Xf(e) = wf)

e out of 4 einto A

®

Value = 24

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) — Xf(e) = wf)

e out of 4 einto A

6
9
0
15 10

6 10

Value=6+0+8-1+11

11
30 = 24

10 :
10
4 4
3 8 8
5 8 10 @
1 10
4 0
15
11 O\

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cuf.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) — Xf(e) = wf)

e out of 4 einto A

Value=10-4+8-0+10
=24

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then
2. fle)— 2 fle)= v(f).

eout of 4 einto A4

Pf. v(f) 2. f(e)

eoutofs

by flow conservation, all terms — > (ﬂ > fle) — X f(e)j

exceptv=sareO v ed \eoutofv eintov

2 fle) = 2 f(e).

eout of 4 einto A

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity =30 = Flow value < 30

®

10

15

Capacity = 30

/.
~

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) < cap(A, B).

Pf.

2 fle)— 2 f(e)

e out of 4 einto 4

2 f(e)

eout of 4

2. c(e)

eout of 4

cap(4,B) .

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cuf.

Value of flow = 28
Cut capacity =28 = Flow value < 28

9
9

1 9
10

6 15 0

14
30 7

10

10 /ﬁ@

10
4 0

4 9

5 10

10

4 0

15

14\£—

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e < E.
. Find an s-t path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

1
0 0

20 10

Flow value = O

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e < E.
. Find an s-t path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

1
20 X 0

20 10

20

\é/ Flow value = 20

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e < E.
. Find an s-1 path P where each edge has f(e) < c(e).
. Augment flow along path P.
- Repeat until you get stuck.

N\ locally optimality # global optimality

Residual Graph

Original edge: e =(u,v) e E. Y capacity

. Flow f(e), capacity c(e). @ 17 —,@
6

flow

Residual edge.
. "Undo" flow sent.
. e=(u,v)and eR = (v, u).

- Residual capacity: @< 11 /O

o) = {c(e)— fe) ifecE
f f(e) ifeR e E " residual capacity

r'e5|dual capacity

Residual graph: G¢ = (V, E¢).
. Residual edges with positive residual capacity.
. Er={e:f(e)<c(e)} v {eR:c(e)>0}.

Ford-Fulkerson Algorithm

capacity

/

Augmenting Path Algorithm

AUGMENT (f, c, P)

1: b « bottleneck capacity of path P.
2: foredge e € P do

3: if e € E then

4 f(e) — f(e) + b. forward edge
5. else
6

7

f(ef) « f(ef) - b.
end if

8: end for

9: return f.

FORD — FULKERSON(G, s, , c)

1: for edge e € P do
2: f(e) « 0.
3. end for
4: while (there exists an augmenting
path P in Gf do
f « AUGMENT (f, c, P).

. Update G.

. end while

. return f.

reverse edge

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cuft.

Proof strategy. We prove both simultaneously by showing :

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(|||) = (i)
Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.
. By definition of A, s € A.
. By definition of f, t ¢ A.

v(f) 2 fle)= 2 f(e)

eout of 4 einto A

2. c(e)

eout of 4

cap(A,B) =

original network

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities c; (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations.
Pf. Each augmentation increase value by at least 1.

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.
Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to terminatel

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
. Max bottleneck capacity.
. Sufficiently large bottleneck capacity.
. Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

. Maintain scaling parameter A.
. Let G¢(A) be the subgraph of the residual graph consisting of only

arcs with capacity at least A.

AN RN
e

e

Capacity Scaling

CAPACITY — SCALING(G, s, 1, ¢)

1: A « largest power of 2 < C.
for edge e € Edo
fle) « 0.
end for "
while A > 1 do
Gi(A) « A-residual graph.
while there exists an augmenting path P in G¢(A) do
f «— AUGMENT(f,c, P).
end while
A — AJ2.
. end while
return f.

2.
3:
4.
5:
6:
Z.
8:
9:

—t —h
- O

—h
b

Capacity Scaling: Correcthess

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
. By integrality invariant, when A =1 = G¢(A) = Gs.
. Upon termination of A = 1 phase, there are no augmenting paths. =

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +[log, C| times.
Pf. Initially C <A< 2C. A decreases by a factor of 2 each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A. <« proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
. L2 = v(f*) < v(f) + m (24).
. Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to runin O(m2 log C) time. =

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Pf. (almost identical to proof of max-flow min-cut theorem)

. We show that at the end of a A-phase, there exists a cut (A, B)

such that cap(A, B) < v(f) + m A,

. Choose A to be the set of nodes reachable from s in G¢(A).

. By definition of A, s € A.

. By definition of f, t ¢ A.

A B
v(f) 2 fle) — 2 fle) «

e out of 4 einto A

2 (c(e)-A) - 2 A
eout of 4 einto A

> cle)- X A- XA
e out of 4 eoutof 4 einto 4 X
cap(4, B) - mA .

original network

7.5 Bipartite Matching

Matching

Matching.
. Input: undirected graph G = (V, E).
. M c E is amatching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6 = (L U R, E).
. M c E is amatching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

@

Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6 = (L U R, E).
. M c E is amatching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

max matching
1-1°, 2-2', 3-3" 4-4°

Bipartite Matching

Max flow formulation.
. Create digraph G' = (LUR U {s, t}, E").
. Direct all edges from L to R, and assign infinite (or unit) capacity.
. Add source s, and unit capacity edges from s to each node in L.
. Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. <

. Given max matching M of cardinality k.

. Consider flow f that sends 1 unit along each of k paths.

. fis aflow, and has cardinality k.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. >
. Let f be a max flow in G' of value k.
. Integrality theorem = Kk is integral and can assume f is O-1.
. Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- |M| = ki consider cut (Lus,RuUT) =

Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
. Generic augmenting path: O(m val(f*)) = O(mn).
. Capacity scaling: O(m2 log C) = O(m?2).
. Shortest augmenting path: O(m nl/2),

Non-bipartite matching.
. Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galai]
. Blossom algorithm: O(n*). [Edmonds 1965]
. Best known: O(m nt/2), [Micali-Vazirani 1980]

