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Chapter 7

Network Flow
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Copyright © 2005 Pearson-Addison Wesley.
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Soviet Rail Network, 1955

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Maximum Flow and Minimum Cut

Max flow and min cut.
n Two very rich algorithmic problems.
n Cornerstone problems in combinatorial optimization.
n Beautiful mathematical duality.

Nontrivial applications / reductions.
n Data mining.
n Project selection.
n Airline scheduling.
n Bipartite matching.
n Image segmentation.
n Network connectivity.

n Network reliability.
n Distributed computing.
n Security of statistical data.
n Network intrusion detection.
n Multi-camera scene reconstruction.
n Many many more . . .
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Flow network.
n Abstraction for material flowing through the edges.
n G = (V, E) = directed graph, no parallel edges.
n Two distinguished nodes:  s = source, t = sink.
n c(e) = capacity of edge e.

Minimum Cut Problem
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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Cuts
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Cuts

Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:
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Min s-t cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem
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Def.  An s-t flow is a function that satisfies:
n For each e  E:  (capacity)
n For each v  V – {s, t}: (conservation)

Def.  The value of a flow f is:       
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Def.  An s-t flow is a function that satisfies:
n For each e  E:  (capacity)
n For each v  V – {s, t}: (conservation)

Def.  The value of a flow f is:       

Flows
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Max flow problem.  Find s-t flow of maximum value.

Maximum Flow Problem
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flows and Cuts

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then

Pf.   
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Flows and Cuts

Weak duality.  Let f be any flow, and let (A, B) be any s-t cut.  Then the 
value of the flow is at most the capacity of the cut.

Cut capacity = 30       Flow value  30 

s

2

3

4

5

6

7

t

 15

 5

 30

 15

   10

 8

 15

 9

 6  10

 10

   10 15 4

 4

Capacity = 30

A



16

Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have
v(f)  cap(A, B).

Pf.

▪

Flows and Cuts
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Certificate of Optimality

Corollary.  Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity  = 28       Flow value  28
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Towards a Max Flow Algorithm

Greedy algorithm.
n Start with f(e) = 0 for all edge e  E.
n Find an s-t path P where each edge has f(e) < c(e).
n Augment flow along path P.
n Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
n Start with f(e) = 0 for all edge e  E.
n Find an s-t path P where each edge has f(e) < c(e).
n Augment flow along path P.
n Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
n Start with f(e) = 0 for all edge e  E.
n Find an s-t path P where each edge has f(e) < c(e).
n Augment flow along path P.
n Repeat until you get stuck.
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Residual Graph

Original edge:  e = (u, v)   E.
n Flow f(e), capacity c(e).

Residual edge.
n "Undo" flow sent.
n e = (u, v) and eR = (v, u).
n Residual capacity:

Residual graph:  Gf = (V, Ef ).
n Residual edges with positive residual capacity.
n Ef = {e : f(e) < c(e)}    {eR : c(e) > 0}.
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Ford-Fulkerson Algorithm
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Augmenting Path Algorithm

forward edge

reverse edge
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Max-Flow Min-Cut Theorem

Augmenting path theorem.  Flow f is a max flow iff there are no 
augmenting paths. 

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the 
max flow is equal to the value of the min cut.

Proof strategy.  We prove both simultaneously by showing :
    (i) There exists a cut (A, B) such that v(f) = cap(A, B).
   (ii) Flow f is a max flow.
  (iii) There is no augmenting path relative to f.

(i)   (ii)  This was the corollary to weak duality lemma. 

(ii)   (iii)  We show contrapositive.
n Let f be a flow. If there exists an augmenting path, then we can 

improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(iii)   (i)
n Let f be a flow with no augmenting paths.
n Let A be set of vertices reachable from s in residual graph.
n By definition of A, s  A.
n By definition of f, t  A.
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Running Time

Assumption.  All capacities are integers between 1 and C.

Invariant.  Every flow value f(e) and every residual capacities cf (e) 
remains an integer throughout the algorithm.

Theorem.  The algorithm terminates in at most v(f*)  nC iterations.
Pf.  Each augmentation increase value by at least 1.   ▪

Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem.  If all capacities are integers, then there exists a 
max flow f for which every flow value f(e) is an integer.
Pf.  Since algorithm terminates, theorem follows from invariant.   ▪



7.3  Choosing Good Augmenting Paths
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Ford-Fulkerson:  Exponential Number of Augmentations

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size?

A.   No.  If max capacity is C, then algorithm can take C iterations.  

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C



29

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
n Some choices lead to exponential algorithms.
n Clever choices lead to polynomial algorithms.
n If capacities are irrational, algorithm not guaranteed to terminate!

Goal:  choose augmenting paths so that:
n Can find augmenting paths efficiently.
n Few iterations.

Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970]
n Max bottleneck capacity.
n Sufficiently large bottleneck capacity.
n Fewest number of edges.



30

Capacity Scaling

Intuition.  Choosing path with highest bottleneck capacity increases 
flow by max possible amount.
n Don't worry about finding exact highest bottleneck path.
n Maintain scaling parameter .
n Let Gf () be the subgraph of the residual graph consisting of only 

arcs with capacity at least .
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Capacity Scaling
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Capacity Scaling:  Correctness

Assumption.  All edge capacities are integers between 1 and C. 

Integrality invariant.  All flow and residual capacity values are integral.

Correctness.  If the algorithm terminates, then f is a max flow.
Pf.
n By integrality invariant, when  = 1    Gf()  = Gf.
n Upon termination of  = 1 phase, there are no augmenting paths.  ▪
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Capacity Scaling:  Running Time

Lemma 1.  The outer while loop repeats 1 + log2 C times.
Pf.  Initially C   < 2C.   decreases by a factor of 2 each iteration. ▪

Lemma 2.  Let f be the flow at the end of a -scaling phase. Then the 
value of the maximum flow is at most v(f) + m .

Lemma 3.  There are at most 2m augmentations per scaling phase.
n Let f be the flow at the end of the previous scaling phase.
n L2     v(f*)    v(f) + m (2).
n Each augmentation in a -phase increases v(f) by at least .  ▪

Theorem.  The scaling max-flow algorithm finds a max flow in O(m log C) 
augmentations.  It can be implemented to run in O(m2 log C) time.  ▪

proof on next slide
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Capacity Scaling:  Running Time

Lemma 2.  Let f be the flow at the end of a -scaling phase. Then value 
of the maximum flow is at most v(f) + m .
Pf.   (almost identical to proof of max-flow min-cut theorem)
n We show that at the end of a -phase, there exists a cut (A, B) 

such that cap(A, B)    v(f) + m .
n Choose A to be the set of nodes reachable from s in Gf().
n By definition of A, s  A.
n By definition of f, t  A.
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7.5  Bipartite Matching
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Matching.
n Input:  undirected graph G = (V, E).
n M  E is a matching if each node appears in at most edge in M.
n Max matching:  find a max cardinality matching.

Matching
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Bipartite Matching

Bipartite matching.
n Input:  undirected, bipartite graph G = (L  R, E).
n M  E is a matching if each node appears in at most edge in M.
n Max matching:  find a max cardinality matching.
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Bipartite Matching

Bipartite matching.
n Input:  undirected, bipartite graph G = (L  R, E).
n M  E is a matching if each node appears in at most edge in M.
n Max matching:  find a max cardinality matching.
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Max flow formulation.
n Create digraph G' = (L  R  {s, t},  E' ).
n Direct all edges from L to R, and assign infinite (or unit) capacity.
n Add source s, and unit capacity edges from s to each node in L.
n Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1



RL

G'



40

Theorem.  Max cardinality matching in G = value of max flow in G'.
Pf.  
n Given max matching M of cardinality k.
n Consider flow f that sends 1 unit along each of k paths.
n f is a flow, and has cardinality k.   ▪

Bipartite Matching:  Proof of Correctness
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Theorem.  Max cardinality matching in G = value of max flow in G'.
Pf.  
n Let f be a max flow in G' of value k.
n Integrality theorem    k is integral and can assume f is 0-1.
n Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R participates in at most one edge in M
– |M| = k:  consider cut (L  s, R  t)   ▪

Bipartite Matching:  Proof of Correctness
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Which max flow algorithm to use for bipartite matching?
n Generic augmenting path:  O(m val(f*) ) = O(mn).
n Capacity scaling:  O(m2 log C )  = O(m2).
n Shortest augmenting path:  O(m n1/2).

Non-bipartite matching.
n Structure of non-bipartite graphs is more complicated, but

well-understood.  [Tutte-Berge, Edmonds-Galai]
n Blossom algorithm:  O(n4).   [Edmonds 1965]
n Best known:  O(m n1/2).        [Micali-Vazirani 1980]

Bipartite Matching:  Running Time


