

Chapter 7

Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more . . .

Minimum Cut Problem

Flow network.

- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ (capacity)

- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ (conservation) e out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$

- (capacity)
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ (conservation) e out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.
$$v(f) = \sum_{e \text{ out of } s} f(e)$$
by flow conservation, all terms
$$= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \Rightarrow Flow value \leq 30

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.

$$v(f) = \sum_{\substack{e \text{ out of } A}} f(e) - \sum_{\substack{e \text{ in to } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} c(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} c(e)$$

$$= cap(A, B)$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28 Cut capacity = 28 \Rightarrow Flow value \leq 28

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 0

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

 $^{\searrow}$ locally optimality \Rightarrow global optimality

Residual Graph

Original edge: $e = (u, v) \in E$.

Flow f(e), capacity c(e).

Residual edge.

- "Undo" flow sent.
- e = (u, v) and $e^{R} = (v, u)$.
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : c(e) > 0\}.$

Ford-Fulkerson Algorithm

Augmenting Path Algorithm

AUGMENT(f, c, P)

- 1: $b \leftarrow \text{bottleneck capacity of path } P$.
- 2: **for** edge $e \in P$ **do**
- 3: if $e \in E$ then
- 4: $f(e) \leftarrow f(e) + b$.
- 5: **else**
- 6: $f(e^R) \leftarrow f(e^R) b$.
- 7: **end if**
- 8: end for
- 9: return f.

FORD - FULKERSON(G, s, t, c)

- 1: **for** edge $e \in P$ **do**
- 2: $f(e) \leftarrow 0$.
- 3: end for
- 4: **while** (there exists an augmenting path P in G_f **do**
- 5: $f \leftarrow AUGMENT(f, c, P)$.
- 6: Update G_f .
- 7: end while
- 8: **return** f.

forward edge

reverse edge

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing:

- (i) There exists a cut (A, B) such that v(f) = cap(A, B).
- (ii) Flow f is a max flow.
- (iii) There is no augmenting path relative to f.
- (i) \Rightarrow (ii) This was the corollary to weak duality lemma.
- (ii) \Rightarrow (iii) We show contrapositive.
- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B) \quad \blacksquare$$

original network

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \le nC$ iterations. Pf. Each augmentation increase value by at least 1. \blacksquare

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. •

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

CAPACITY - SCALING(G, s, t, c)

```
1: \Delta \leftarrow largest power of 2 \leq C.
 2: for edge e \in E do
 3: f(e) \leftarrow 0.
 4: end for
 5: while \Delta \geq 1 do
 6: G_f(\Delta) \leftarrow \Delta-residual graph.
 7: while there exists an augmenting path P in G_f(\Delta) do
 8: f \leftarrow AUGMENT(f, c, P).
 9: end while
10: \Delta \leftarrow \Delta/2.
11: end while
12: return f.
```

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow. Pf.

- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths. ■

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times. Pf. Initially $C \le \Delta < 2C$. Δ decreases by a factor of 2 each iteration. \blacksquare

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$. \leftarrow proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- L2 \Rightarrow v(f*) \leq v(f) + m (2 Δ).
- Each augmentation in a Δ -phase increases v(f) by at least Δ . ■

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. \blacksquare

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ -phase, there exists a cut (A, B) such that $cap(A, B) \leq v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of $A, s \in A$.
- By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$$

$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$$

$$\geq cap(A, B) - m\Delta$$

original network

7.5 Bipartite Matching

Matching

Matching.

- Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Max flow formulation.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'. Pf. \leq

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has cardinality k.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'. Pf. \geq

- Let f be a max flow in G' of value k.
- Integrality theorem \Rightarrow k is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M
 - |M| = k: consider cut $(L \cup s, R \cup t)$

j

Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?

- Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.
- Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- Shortest augmenting path: $O(m n^{1/2})$.

Non-bipartite matching.

- Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
- Blossom algorithm: O(n⁴). [Edmonds 1965]
- Best known: $O(m n^{1/2})$. [Micali-Vazirani 1980]