
1

Chapter 4

Greedy Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.5 Minimum Spanning Tree

3

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T  E such
that T is a spanning tree whose sum of edge weights is minimized.

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T, eT ce = 50

4

Applications

MST is fundamental problem with diverse applications.

n Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

n Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

n Cluster analysis.

5

Greedy Algorithms

Kruskal's algorithm. Start with T = . Consider edges in ascending
order of cost. Insert edge e in T unless doing so would create a cycle.

Prim's algorithm. Start with some root node s and greedily grow a tree
T from s outward. At each step, add the cheapest edge e to T that has
exactly one endpoint in T.

Remark. All these algorithms produce an MST.

6

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

Cutset. A cut is a subset of nodes S. The corresponding cutset D is
the subset of edges with exactly one endpoint in S.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)

7

Cycle-Cut Intersection

S

V - S

C

8

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge
belonging to C. Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST

9

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. (exchange argument)
n Suppose e does not belong to T*, and let's see what happens.
n Adding e to T* creates a cycle C in T*.
n Edge e is both in the cycle C and in the cutset D corresponding to S
 there exists another edge, say f, that is in both C and D.

n T' = T*  { e } - { f } is also a spanning tree.
n Since ce < cf, cost(T') < cost(T*).
n This is a contradiction. ▪

f

 T*
e

S

10

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf. (exchange argument)
n Suppose f belongs to T*, and let's see what happens.
n Deleting f from T* creates a cut S in T*.
n Edge f is both in the cycle C and in the cutset D corresponding to S
 there exists another edge, say e, that is in both C and D.

n T' = T*  { e } - { f } is also a spanning tree.
n Since ce < cf, cost(T') < cost(T*).
n This is a contradiction. ▪

f

 T*
e

S

11

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
n Initialize S = any node.
n Apply cut property to S.
n Add min cost edge in cutset corresponding to S to T, and add one

new explored node u to S.

S

12

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]
n Consider edges in ascending order of weight.
n Case 1: If adding e to T creates a cycle, discard e according to

cycle property.
n Case 2: Otherwise, insert e = (u, v) into T according to cut

property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S

13

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all
edge costs by tiny amounts to break any ties.

e.g., if all edge costs are integers, perturbing cost of edge ei by i / n2.

Implementation.
Prim’s and (Kruskal’s) algorithm can find MST in O(mlog n) time.

4.7 Clustering

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

15

Clustering

Clustering. Given a set U of n objects labeled p1, …, pn, classify into
coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem. Divide into clusters so that points in different
clusters are far apart.
n Routing in mobile ad hoc networks.
n Identify patterns in gene expression.
n Document categorization for web search.
n Similarity searching in medical image databases
n Skycat: cluster 109 sky objects into stars, quasars, galaxies.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold

16

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.
n d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
n d(pi, pj)  0 (nonnegativity)
n d(pi, pj) = d(pj, pi) (symmetry)

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer k, find a k-clustering
of maximum spacing.

spacing

k = 4

17

Greedy Clustering Algorithm

Single-link k-clustering algorithm.
n Form a graph on the vertex set U, corresponding to n clusters.
n Find the closest pair of objects such that each object is in a

different cluster, and add an edge between them.
n Repeat n-k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the k-1 most
expensive edges.

18

Greedy Clustering Algorithm: Analysis

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting the
k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C1, …, Ck.
n The spacing of C* is the length d* of the (k-1)st most expensive edge.
n Let pi, pj be in the same cluster in C*, say C*r, but different clusters

in C, say Cs and Ct.
n Some edge (p, q) on pi-pj path in C*r spans two different clusters in C.
n All edges on pi-pj path have length  d*

since Kruskal chose them.
n Spacing of C is  d* since p and q

are in different clusters. ▪

p qpi pj

Cs Ct

C*r

Homework

•Read Chapter 4 of the textbook.

•Exercises 5 & 18 in Chapter 4.

19

